座談会——人間の知能と機械の知能

1986年9月6日　於：北海道大学

出席者
座　長　志村　正道（東京工業大学工学部情報工学科）
相原　恒博（愛媛大学工学部電子工学科）
安西紳一郎（北海道大学文学部行動科学科）
稲垣　康善（名古屋大学工学部電気工学教室）
小川　均（大阪大学基礎工学部情報工学科）
北橋　忠宏（大阪大学産業科学研究所）
佐伯　元司（東京工業大学工学部情報工学科）
杉山　裕二（大阪大学基礎工学部情報工学科）
田村　進一（大阪大学基礎工学部情報工学科）
鳥居　宏次（大阪大学基礎工学部情報工学科）
中川　裕志（横浜国立大学工学部電子情報工学科）
西田　豊明（京都大学工学部情報工学科）
馬場　登（愛媛大学工学部電子工学科）
原口　誠（九州大学理学部基礎情報学研究施設）
福村　晃夫（名古屋大学工学部情報工学科）

この座談会は、昨年9月に北海道大学で開かれた文部省の知的処理機構の研究会に参加した方々にお集まりいただいて、研究会後に行われたものである。ここに掲載したものは人間の知能と機械の知能について、2時間にわたって自由に話していただいたものを約半分に絞って、編集したものである。

志　村　今日は、これからの人工知能の研究についていろいろお考えを述べていただきたいと思います。
人間の知能というものを考えますと、たとえば、学習や推論、そのほか理解であるとか、いろんな能力がありますが、そういうものを手本にして、あるいは取りだして、機械にインプリメンテして何か知的なシステムを作り上げようというのが、人工知能の一つの目的だと思うのです。まず最初に、そういう立場から北海道大学の安西先生に、そのバックグラウンドから、人間の知能と機械の知能についてお話しください。

安　西　人間の知能と機械の知能の関係について簡単に言うのはむずかしいですが、大きな違いを申し上げますと、人間というのは、ダイナミックな時空間のなかで生存しているといいますか、時空間の変化に適応していくような、そういうシステムであるということです。それに対比して、人工知能のシステムというのは、そういう適応機能を持つ必要は今まではそれほどはなかったと、そういうことが大きさ違いないと思います。それをこれからどういうふうに定式化していくのかというのは、たとえば一つ具体的に申しますと、ロジックという方法があります。しかし、形式論理というのは、やっぱり時間的的概念ですとか、空間的な概念っていうのをフォーミュレートするのには、ちょっとむずかしい点があります。特に時間の問題に関してはきっと入ってないんじゃないかと思います。たとえば、テンポラル・ロジックでもどうしても無理して時間というものを形式論理のうえに乗せていかなければ、ということがあると思います。あるいは、非単調論理にしてもデフォルト・ロジックにしても、そういうノノミュニックなロジックっていうのもそうです。やっぱり時間の流れのなかで人間というのは、新しい情報を受け取って、それを自分なりに変換していき、そういうシステムだというふうに考えられるわけですが、そういう時間の流れを無視して、ロジックだけのうえでって、学習みたいなことをやろうとする。どうしてもちょっと無理したロジックを積み上げていかなければならないわけです。無理してやっているかどうかっていうのは主観的な問題ですが、そういうことがあると思います。ですが、その
一方では、やっぱり人工知能の研究というのが、徐々にそういうことを取り組んできた、ゆっくりではあるが知識の獲得とか学校とかそういったいろいろな問題を取り扱うようにになってきている。それを人間の知能がこうだからって、ダイレクトのそれを使って計算機上に乗せようとか、そういうことを考える時は、やっぱり無理がありません。計算機科学のなかでフォーミュレートできるところはフォーミュレートしていくというふうにしないとそれはむずかしいわけですね。テンポラル・ロジックとかノンモノドニク・ロジックというもののもこの流れのうえにあって、きちんとしたシステム化のための基礎づけをするという意味では重要なコンテキストビューだと考えます。計算機、人工知能のシステムについても二つの考え方があって、人間が近ければ近いほど、人間の知能に近ければ近いほど良いと考え方があります。一方では、人間にできないことをやっても用道具であればよいという考え方もあるわけですから、その辺をどう考えるか。ただ、今までの歴史が示すとおり、知識表現なんかの問題に限らず、やっぱり最初は、人間の知能をもとに定式化しようと思うところからみんな始まっているわけです。それが今一段落して、言ってしまうとソフトウェア工学と言いますか、ソフトウェア基礎論レベルでもって、いろいろなことが考えられて来るようになっている段階なのです。

しかし、やっぱり何か新しいことを始めようと思うと、人間の知能というのがヒントになるわけです。研究には段階があって、人間の知能をヒントにしなければいけない段階もあれば、ソフトウェア基礎論みたいなことをやるべき段階もあるし、それのどこにアタックするかっていうのは、やっぱりその人自身、研究者自身の問題だと思います。

志村 次にソフトウェア工学に関することを横浜国立大学の中川先生にお聞きしたいと思います。

中川 ソフトウェア工学というのは、論理を計算機の上にどうやって乗せたらいつかっていう意味でのソフトウェア工学というふうに解釈して話を進めさせていただきます。

論理を乗せるときに、現在の計算機で実用上でのスピードで実現できそうなものというのは、一階述語論理の範囲にはほとんど限られていて、その辺がほとんど現在では限界だと言われています。しかし、一階述語論理よりはかかる高いレベルの高階述語論理的な扱いも人間は実に楽々とやっている。そうなってくるとわれわれが考えなければならないのは、人間がそういった高階の論理、一階述語論理以上にむずかしい論理をどうやって扱っているかというメカニズムを知るということが、重要になってくるふうに考えています。実際プログラムを動
かすことになれば、フォーマリゼーションをやらなくてルールベースシステムみたいにかっこでしょう。あるいは手続き的なプログラムを書いてしまってでもできるわけで、論理みたいなものに頼らなくてもよいわけです。しかし、そうすると、全体としての見通しを得ることが、非常にむずかしくてくるわけです。実際のシステムとして動くものに移すときには、知識工学的な手法に還元していくことも必要になってくるので、両方ともやはり重要であると思っています。

そういった点から、論理の研究者とプログラムの研究者は連携して密にしておかないと良い成果は望めないだろうと思います。

志村 稲垣先生の話にしても、中川先生の話にして、とにかく最初にコンピュータありきというふうな感じの話だったのですが、安西先生は知的なところで何か言い残したことがあるみたいですね（笑）。

安西 ロジックがいやだと言ってるわけでは決していないのです。いろいろな研究のレベルがあって、計算機にきちんと乗せるということを考えれば、ロジックというのは一番良い方法だと言うのところは思います。やはりどうしてもその前の大規模レベルに目がいってしまうのでは混同されちゃうのですので、計算機の上に乗せるということを目標にするのであれば、しっかりとフォーマル化できるようなセオリーないし方法を使うというのは当然のことですから、それに誤解のないようにお願い致します。

稲垣 今、安西先生のお話しとは違うところでもう一つコメントをしたいと思ったことがあるのですが、これは先ほど志村先生が最初にコンピュータありきで話が進んでいるとおっしゃいましたが、もう一つはやっぱり、ロジックをにもってきた歴史なのか、人間を理解したいという動きが働いていると思います。それで人工知能のなかにも、両方あるではないかと思うのです。人間自身がどのように考え、どういうふうに推論しているかということ自体を理解したいということと、それから、実際に人間の役に立つようなツールを作りたいという要望と、両方あると思うのです。

志村 では次に、幅広く研究をおやりの大阪大学の鳥居先生に、今までの3人の先生方の話について何か、
学の一応有効であるジャクソンなんかも、2.3年前に書いている本としてワールドの表現のようなことをやっているわけですが、表現についての認識が基本的なところに来始めていて、ソフトウェア工学という位置づけがそうそろでののではないかと考えております。

志村 いま、鳥居先生のほうから、キーワードとして、理解とか表現とかいう言葉が出ましたが、理解とか表現とかいうと自然言語がからんでくるわけなので、もともと多値論理を研究されていて、今は自然言語もいろいろと研究されている、大阪大学の北橋先生にその辺のことを中心にお願いします。

北橋 多値に関して多少これまで考えてきたことを話してみたいと思います。対象世界、時間を固定しても対象世界全体が曖昧性を持っている場合、曖昧な部分をもう少し真理値の値を増やしてなんとか対処しようということで、多値論理が生まれたと思うのです。しかし、これも、ロジカルにコンプリートな系を求めようとします。演算の過程と人間の推論過程がうまく合わない面ができています。それが端的に現れますのは、否定合意のところであります、このあたりをどうにか解決できないものかと、いろいろな関数を導入したりしてみたこともあるのですが、結局は人間の直感的な推論と、それをロジカルに表現した形式的な推論とかがぴったりといきような表現というものがどうも見つけられなかったというのがこれまでの実感です。このような観点からとらえますと、二値というのは固い部分があるわけですが非常によく切り取られたと思います。

最初にお尋ねのありました自然言語の多値論理とかわかりやすいというのはありますか、なかなかうまくいかないのかと合せというのは今のところ思いつくありません。

志村 自然言語は、いろいろむずかしい問題を含んでいると思うのですけれど、いままでの話は少し論理に偏っていますので、少し話題を変えたいと思いまして、自然言語でプログラムを作ったという話を当然でてくるわけでありまして、現在ICOTを中心にとして、TELLというようなシステムを作っていきますけれど、これについては東京工業大学の佐伯先生に、その辺の話をちょっとしていただきます。

佐伯 人間がソフトウェアを作るとき、まず最初に、"これこれこういうもの"を作りたいというような漠然としたイメージがあって、それを実際には、要求仕様をきちんと決めるというステップがあります。この曖昧なイメージから完全な要求を決めるという作業は、人間の極めて高度な知的作業の一つでして、完全に要求を定めるのがむずかしいということが多くあります。私は、この要求を完全にかつ正しく決める「形式化」という知的作業を分析しますし、計算機支援の仕様定義システム、つまり「形式化」のための知識ベースを持った仕様記述のエキスパートシステムを作ろうということを考えております。このようなシステムで、できる限り完全な仕様を書かせ、良質のソフトウェアを作成するのに役立てようというわけです。

そこで、機械で処理するという前提のもとで、仕様を何で書くかですが、読みやすいとか書きやすいとかいった人間とのインタフェースを考えますと、やはり自然言語がよいのではないかと思います。それから見て、われわれは、自然言語のサブセットで仕様を記述し、それをモダルギー文法の手法を用いて、形式的な論理に変換し、機械処理を行うという方法をとっております。ところが、モダルギー文法のようなもので意味づけできるような限定された自然言語の世界と、われわれが普段仕様書を書くときに使っているidos的な自然言語の世界との間には、大きな隔たりがあるわけです、そのギャップをいかに埋めるかという観点からも、「形式化」のための知識ベースは重要な役割を果たすと考えています。

志村 自然言語といえば、機械翻訳ということが、いま主体で行われているわけではないけれども、自然言語処理というのは、いろいろなところで応用されていますね。では、大阪大学の田村先生に人工知能との関連について話していただきます。

田村 言語の関係から言いますと、人間の発話行為というのは、非常に微妙にできている、というような感じがいたします。それを、われわれの所では、なんてか実現して、たとえば、対話のような場合を考えてみます。それをコンピュータのソフトウェアで実現しようというようなことを、あるいは、言語の理解のモデルを作ってみようというようなことを
やっているときに、非常に人間というのは妙なにやる、という感じがします。それから、ちょっと話しは戻るんですけれども、先ほど来、論理の話が出てきまして、人間というのは時間空間にうまく場面場面に応じて、いろいろな論理を変えていっているわけですね。あるいは、高階論理なんかを、非常にうまくとこうだけを取り出して使っている、というふうな話がございましたけれども、論理というのは人間の知能を理解するにはどうしても限界があるような感じがします。最終的には、人間には直感といいますか、なおかそうな力があって、そういう論理自体は不完全かもしれませんが、最後にああだろうだという評価がちゃんと正当にできるわけですね。ある要求があったときに、その評価のメカニズムをうまく働かせて、論理で出てきたもの、あるいは不完全な論理で出てくるものをうまくスクリーニングすれば、人工知能が実用的なものになる場面が出てくるのではないかというふうな気がします。

志村 直観とかいう誠に人間らしい、ある意味での能力を人間は持っているわけなんでしょうけれども、コンピュータという対象を考えると、なかなか、そういうところまでいかないんでしょうよね、たとえば、定性的論論なんかわに直観に近いようなものなのかと思いますが、その辺京都大学の西田先生に、うかがいましょう。

西田 定性的推論のもともの動機といいますのは、人間がまわりの世界について常識的に考えていることを、ある種の論理でもって形式化したいということだったわけです。これが電気回路の分野ではどうということにあたるかと申しますと、電気回路のふるまいは回路方程式で完全に規定されますが、方程式ばかり見ていも、それは静的な世界であって、素人にはそのままであがるのが直観というもののは伝わってこない、方程式というものは論理の役割だと言いますと、直観の情報を取り入れるというか、定性的推論の目的であります、これは--連のヒューリスティックという形で与えられています。直観があって初めて静的なもののがふるまを動的に理解できるわけです。現在の定性的推論はまだ非常に浅い段階にありますが、これから十分に研究が進むと、もっといろいろな応用が期待できると思います。

志村 定性的推論の話がありましたけれども、現在推論というテーマのなかでは、非単調推論というのが大きなテーマになっています。少しむずかしい話になるかもしれませんが、愛媛大学の相原先生にお話しいただきたいと思います。

相原 AIの一つの実用的な応用として、相談システムを考えられますが、人間になじみやすいようなシステムをつくるといると、どうしても、常識や不十分な知識からでも結論を導く非単調推論が必要になります。この非単調推論へのアプローチはおそらくない、二つのカテゴリーに分けられると、一つはReiterのデフォルト論理やMcDermott-Doyleの非単調論理のような、特殊なオペレータを持つ式の集合からなる公理系から推論を行う論理体系を議論するものです。他的一つはDoyleのTMSやDekleerのATMSのような実用的といいか、process-dependentな推論システムを議論する立場です。私は前者の立場を研究していますが、この両社とも完全とはいええない状態で今後の研究の進展が望まれます。

志村 ついでに、もう一つ、これはむしろもう少し人間らしい推論かもしれないと言われている類推について、九州大学の原口先生にお願いします。

原口 類推というのは、人間が困ったときに一番頼りにするような推論の一ツとしてよく使われることで、類推研究は人間の知能と機械の知能ということもの対応、対比で出てきたと思うのですけれども、人間の推論というのは非常にダイナミックな側面を持っているわけです。おそらく非単調論理とか、デフォルト推論なんかは時間によって変化しそうな不完全情報をどうやって取り扱うかという点に原点があったと思います。また、時間の推移と共に、過程論的にダイナミックに変更してゆく場合の、いわゆる機能的推論が持っている過程論的な取扱い方が、新しい推論を考えううえで大事になるのではなかろうかと思います。そのなかで、帰納推論が持っているような仮説生成、検証および修正というプロセスで、他の推論、たとえば、非単調論理とか類推とかそういうものを含むような形で、一つ
の過程論的なダイナミックな推論システムという形を考えてゆくことも大事ではないかと思うふうに考えています。

志村 今度は、Purdue大学に2年間おられて、エキスパートシステムを研究してきました。大阪大学の小川先生に全体のシステムからみた知能というふうなことをお話しいただきます。

小川 いまままで皆さんが言われたのは、いわゆる知的処理ということに関して、なるべくフォーマライズして、動きというものを受け明にしてゆくというような、話ですね。現在、人工知能システムを使って何かしようとするときに、一層問題になってきますのは暖昧さ、北橋先生も言われていましたけれども、自然言語からくる暖昧さもありますし、人間が持っている知識の暖昧さもあります。

一般的にいろんな暖昧さがあるわけですから、も、簡単に暖昧さと言っているけれども、そういうものをいかに扱うかというのも、非常に重要な問題になってしまうと思います。それには、大きく分けまして、数値を使ったやり方、いわゆる記号レベルのやり方というようなものが考えられます。数値を使うものには確信度や確率があります。確率論の発展として、DempsterとShaferの理論のうがありますけれども、これは、そういう数値処理のフォーマライズということかもしれません。非単調論理とか定性的な推論もそういう暖昧さをうまく処理したいということにもつながっていくのではないかと思っています。

志村 話しがどうも論理のほうにいってしまうのでですが、論理学ということと論理的という概念は多分違うのだろうと思います。それでは、プログラムについて理論的で研究されている大阪大学の杉山先生、若手の研究者の代表として一言お願いします。

杉山 私はもともと数理的な言語関係の研究をやっております。数理的な言語というのは、問題の仕様から実際のプログラムまでいろいろなレベルで書くことができるという特徴があるんです、そこででは定性的に書いてある問題からいかにして実際の手続き的なものを得るかという問題があり、両者の間には大きなギャップがあります。このギャップをどう埋めるかということと、もう一つは人間が問題を与えるときにはどうしても自然言語で与えますが、自然言語とその代数的なものとの間のギャップをどうして埋めらたいかと、この二つの点が今一番大きな問題だろうと思います。

志村 愛徳大学の馬場口先生はパターン認識について研究されてこられ、そして相原先生のところで現在は非単調論理について興味をもっておられるですが、そういう立場から、非単調論理について話ししてください。

马場口 パターン認識の場合は、暖昧なところは割と暖昧なままでもいいという感じのところがあるわけですが、論理的に暖昧さを扱うことは非常にむずかしくなるわけです。たとえば、現在の非単調論理というのは、公理や前提の集合は神聖にして侵すべきですから、論理体系の完全性や健全性を重要視しています。その結果、非常に取り扱いにくく、計算機に乗せるという点で困難となっています。そこで、発想をかえて、公理系の修正をも許すような柔軟で取り扱いやすいアプローチが今言った意味において大事になると思います。

論理体系のきいさは、もちろん重要なことですが、エンジニアの立場からはやはりcomputableということに対し sensitiveでなくてはいけないのではないでしょうか。

志村 安西先生の最初の発言から論理に入っていったわけで、これは二つに自然な限りゆきだと思っていますが、そのほかにももう少し人間の知能という考え方を考えなければならないところがあるのではないかと思います。

安西 人工知能の研究のなかで人間の知能というものにどういうふうにみてゆくのかということがやっぱり研究者のおのおのの目標によってずいぶん違ってくると思うのです。

そこから後が出ないんですが、一応ここではいま原口先生も言われていま出し、皆さんと乗まって、動いて、それだけ将来はなんかの役に立つようになってゆくものを作りたいということ目標を持っていると仮定する。私も半分はそんななんで、そういうことを考えます。そのときに人間の知能のなかでどういったものを取り込んでいければいいのかと考えると、割と、山のようにありますましてやっぱりいろんなことがあるのです。

志村 人工知能というのはある意味で急速に産業界に
に進出してきて、基盤技術のほうがとにかくのっかってきて、その基盤技術を取り扱ううえでいろいろ問題が出てきているのです。私は昔から学習ということに興味を持ってやっておるのですが、確かに、飛行機の研究をやるために今さら鳥の研究をする必要はないのですが、ただ知能という問題を扱う場合には、安西先生もも最初に言われたようにはっきりする意味で人間の知能というものが必要なことを、もう少し認知科学的といえますか。そういう面から研究していかなければいけないのではないかと思います。たとえば、人間はプログラミングをすることはできる。計画を立てることができる。発見をできる、というような事例がいろいろあるわけですが、そのための基盤技術としては、推論であるとか、学習であるとかいうことが対応していると考えられているわけです。

しかし、果たしてそんなものでいいのかどうかということです。もう少し知能について、形態要素的になし研究していかなければいけないのではないかということは実感です。そうすることによって必然的に基盤技術が出てくるのではないかという気がします。ですから最初にマンンそのため考え方が最初に人間の脳があり、これが発展から、研究していくことも必要ではないかと思います。

それから、話はちょっと変わりますが、残念なことにはとんどの概念がみんなアメリカから出ているわけで、出てきたもの日本で一生懸命皆さん方が研究を進めていらっしゃるわけですが、人間の知能というのはアメリカ人でも日本人でも変わらないのですので、もっと日本人の間から新しい論理だとか、新しい概念が出てきてまちまちそうなる気がした。

安西　今のおのAIの研究でやっぱり抜けていると思うようなところで、人間の知能では非常に重要だと思うされるところを私見で申し上げますと、一つはパターン認識と推論の関係ということです。つまり、推論機構の入出力の問題であるが、人間の場合は、そのパターン認識、視覚情報処理系と推論機構の、非常に密接な関係が出てくる。たとえば何かに注意する、注意の機構とか選択的な注意の機構とか、そういうことが生理学のレベルでも比較的わかりつつあります。そうすると、どういう情報を取り込むかどうか推論に都合がいいのかし、そういうところからすでに人間というのは情報を選択して使っているわけですね。人間の知能との差というのは推論モデルだけじゃない。いろいろほかのモデルとのinteractionても知能というのは構成されているのだというところが多分非常に大きい違いだと思います。

人工知能のシステムというのは計算機自体が、与えられた目的にそってやっているписыва。目的が与えられても、答えを出すようなものが計算機である。というふうによくいわれますけれども、たとえばコンサルティングシステムとか会話の処理をするたいなことになりますと、途中でゴールが生成されるということがやっぱりありうるわけです。ゴールのストラクチャのダイナミクスみたいなものをどういうふうに扱っていくかということでも非常に大きな問題だと思っています。会話処理でもエンドゴールが与えられていて、それを達成するためにいろいろな会話をやっていくということはプランニングの問題として多分できるわけですが、そうではないかなわりダイナミックな処理を行うならばならなくなる可能性があります。

それから曖昧推論に関しては人間の場合には曖昧にやられているわけですが、本当に曖昧のなのかとかいうことは実はよくわからないわけです。たとえば、certainty factorなんてを入れるというのは、やっぱり一つ一つの妥協案だと思うのです。形式論理のうえで人間が曖昧だと思っていることをちゃんとフォーミュレートしていくことは非常に重要なことだと思います。

中川　いずれにもわれわれが、志村先生の言葉ではありませんが、おそらくとそこから脱却できなくなるアメリカのAIの原点になるような哲学に少し影響され過ぎているということがあります。彼らの論文をもう少しよく読んで、それを論破するような哲学的観点をわれわれも持たないといけないわけで、いつまでも表面的なソフトウェア的な生産物みたいなものにはばらかに追従していると、アメリカを越えていくことはできないと思うのです。それから、もう一つ、最近「理解する」ということは何なのかということについて考えているのですが、「理解」を定義することは非常にむずかしい。理解というものはその人がもっとも持っている知識の体系がまったく変わらないという状況の下でうまくシステムをとるということに終始している、ところが、真に理解したときには、人の持っている知識体系に何らかの変化が生じていると思います。ですから、「理解」の研究は、学習の研究なんかと必然的に結
びついて進められるべきだと思っています。

稲垣 お話しをうかがって感じたのは、機械と人間との間のインタフェースをどうやって埋めていけば、実際に使いやすいものができるだろうかということが非常に大きな問題になっているのではないかということが一つです。それからもう一つは、実現可能なシステムを作ろうではないかなという話がありましたが、これはやっぱりロジックに物事をするときに非常に大量の計算をしなければいけないわけで、そうなると、計算の複雑さみたいなものを何かうまく方法で克服していかなければいけない、人間の場合は何かの方法でうまく克服していると思うのです。たとえば、うまく表現を使ってそれを克服するとかですね。人間がいわゆる数学者のなかで使う無限の概念みたいなのがありますが、実際に彼らが何がある頑張ると考えなければならないのです。ただ無限の概念を使うことによって非常に物事をわかりやすく、記述することができる。たとえば、recursion を使うと非常に物事を記述しやすく、それがrecursion が決める全部のことをちゃんと理解しようと思うとむずかしくなるところがあるかもしれませんが、うまく概念構成をしてどのようにして物事に捕まったいかということは、複雑さを克服するという点からも重要な問題であると思います。さきほどの曖昧さの問題にもそのような側面があるのではないかと思います。

北橋 先ほど表現の問題に関して少し思っていたことは、いま、稲垣先生がおっしゃっていたことと関連するのですが、自然言語の構成解析のための文法は、CF でここからチェーンリング・アクセスリナルな文法でなければ間に合わないということがあるのですが、それにもかかわらず CF が使われてますね、ロジックの面でも実用面から考えると、高難な述語論理を人間は使っているにもかかわらず、そのときに有限のことしか考えず、それでうまくいけばそれでいいという感じで一階述語論理を使うようなところがあると思うのです。このように実用上は多少目をつぶって、使法をうまく利用していくということが、表現の問題ではあるのではないかという感じがします。

小川 いわゆる知的処理をしようとしたときに、最終的に人間の持っている知識、know-how というものを計算機に入れる操作がいるわけです。そうしたときに、どういう形で計算機に表現するかということも、一つの重要な問題だと思うのです。知的処理としてはロジックということが非常にいいというのは認めることにして、人間の考えていることを表現するということを考えたときに、果たしてロジックでそのまま表現していいのかというのが私自身ちょっと疑問なわけです。能力的にロジックと同じであっても、やはり相手が人間ですから、何か人間に近い、人間がわかりやすいような表現というものが必要だろうと思います。

処理方法や推論方法に関する知識も表現できるのがよいと思います。

安西 人間と機械の今のところの非常に大きな違いは、与えられた知識表現のうえで推論をしているのが機械で、人間の場合はその推論に適した知識表現を自分で選んで使っているのではないかでしょうか。

西田 稲垣先生がおっしゃいましたように、人間の知識というのは、かなり無限の世界を含んでおり、少なくとも実数的な無限の世界を含んでいると思います。それをどう扱うかということが問題になるわけですが、たとえば定性的推論を使うという立場では、数理的無限の世界をあらゆる種の理論であって、加算的に無限、あるいは有限の世界で割り切ってしまい、そのなかで推論することによって知りたい性質が浮き彫りになるようにすることをねらっています。

鳥居 きっかけ志村先生がおっしゃいましたように、認知科学的なものというのですか、やはりえきごとではそういう新しいものは出てこないと思うのですね。アメリカ人などを見ますと、非常にドロ臭い実験の積み上げをやっているケースが多々ある気がするのです。

北橋 人間と機械の違いというので、私が日ごろ考えている一つは、機械はこれまでのところ作業効率というか、外界を操作する機能を持たていないところが人間と違うところの一つだと思うのです。結局、人間というものは外部から得たデータを自分の考ええる範囲内においてロジックを組み立ててみて、多分こういうことだろうかという予測を立てて、それを外界へ帰って一度戻ってやって自分で試すことができることも認識に大きな役割を果たしているのではないか、という気がするのです。そういう要素を計算機にあてはめ作ってやるには、人間が手に貸してやらざるを得ないのでではないかと思います。その一つの方法としては前日に知った知識を計算機が一晩考えて、翌日「こういうことを考えたんだけれども、これ正しいのだろうか？」というように人間に聞き返してきて、それに対して人間が「それはこうだろう」とか言ってやるようなことができるとか、今までとは一味違った学習というか、理解みたいも

March 1987

人間の知能と機械の知能 83
のが進むのではないかって気がします。

田村 今、北橋先生がおっしゃいましたが、機械に発明のようなことをさせる研究が、昔、パターン認識にございました。それはパターンの識別関数を発明する機械なんですが、ランダムでいろいろ出すわけですね。そのなかから、うまく識別できるようなものを持ってくるということがございます。ある与えられた知識から推論していきますと、全てではないでしょうか。不要な知識ばかり出てくるわけです。そういうときに、そういう評価をしてくれるものが必要ではないかと考えているんです。

志村 最後になりますが、人工知能学会というのは当然。人工知能の研究および教育などに関連していると思うのですが、その辺のことをふまえたうえで、今後の研究体制といったものを、福村先生のほうからまとめて何かコメントをいただきたいたと思います。

福村 先ほどどういったお話しをうかがっておりま
すと、多大に感謝しております。いろいろな面から包括的、総合的なアプローチをしていただいているようですから、今後の発展が非常に期待されるわけです。

ところで、人工知能とか計算機科学とかを全体的にみてみますと、志村先生が先ほど指摘されましたように、概念がほとんどあちかちでして、しばらく前にエキスパート・システムの国際シンポジウムがありまして、そのときに日本の方がAI関係のサーベイをなさったわけですが、出てきます概念は全部アメリカ製の概念でした。それで、日本独特のAI研究ができないかと非常に強く感じたわけですね。これらの点につきましては、先ほど中川先生がちょっと御指摘になりましたが、新しいアイデアで、特に若い方に積極的に従来のものにとらわれない、斬新な、とんでもないようにアイデアを出していただけないかと思います。そのことにつきましては、私どもの年寄りのやる一つの義務としまして、人工知能学会を作りましたが、会誌とか研究会により研究・討論の場ができたということは、非常に頼もしいことじゃないかと思います。それと同時に、鳥居先生も言われましたようにコンピュータがなくてはAIの研究はできませんので、それにはやはり、ドキュメンタリーを集めることが非常に頼もしいことではないかと思います。