設計対象物のメンタルモデル
Mental Model of Design Object for Machines

伊藤 公俊*
Masatoshi Ito

* 東京工業大学 総合理工学研究科
Graduate School at Nagatsuta, Tokyo Institute of Technology.

1992年1月17日 受理

1. はじめに

モデルとは一般に、対象とする事物を特定の目的に向けて抽象化した表現であるが、設計対象モデルは、設計対象を設計し実現（加成など）するために対、設計過程においては設計対象の場ベース機能的側面を記述するため、含むように、解析を始めとする評価において設計対象の物体としての性質、実現過程においてはそれを加工したり、検査するために必要な情報を、広範囲の表現目的を持つ、このように多種多様な目的を持つことを、設計生産に関与するさまざまな活動がすべて設計対象モデルを中心に行われていることになるという意味で、統合性と呼ぶことにすれば、統合性は設計対象モデルの際立った性質の一つとなる。したがって、モデリングの視点は、統合性を実現するように選ばれる必要がある。さらに、機械設計において統合性と呼ぶべき性質が要求される。機械製品は、同種類のものでも各種の上位システムの一部として組み込まれることが多いこと、部分的には類似しているにせよ、対象における機能を持つ機械を設計できことが要求されることから、特定の狭い製品クラスだけが表現可能であるというわけにはいかない。作業の製品クラスを対象とすること、すなわち一般性が要求される。

知的 CAD を実現するうえで、設計対象モデルをいかに構成するかが重要な要素の一つであることは明らかである。また、設計知識には設計対象に関するものが含まれるから、知識処理の観点からも重要である。ただ、モデリング技術としての困難さあるいは完成度は対象分野によってばらつくのがある。例えば、デジタル LSI のパタン設計などでは相当に完成されており、知的 CAD を構築するための技術課題は別のところにあるようである。機械設計の場合は、その対象が 3 次元形状であるために、記号処理しては知識処理の対象とすることに困難があることが理解される。従来、機械系 CAD の研究ではグラフライクスの研究と同様にヨーダド幾何学的形状モデリング（ソリッドモデリング）が研究されてきた。対象モデリングが CAD システム構築のかぎになることは以前から理解されており、統合性と一般性を実現するべく努力されてきた。ヨーダド幾何学の話すれば、一見一般性は実現されるように考えられるが、統合性は現在のところ実現されたとは言えないし、しかも、一般性は統合性が実現されて初めて意味を持つのでであるから、ソリッドモデルだけでは相当に不満足であるということになる。

本稿では、機械系知的 CAD を構築するうえで解決するべき大きな課題の一つである、設計対象モデルにおける形状の取扱いについて考察する。そのためにはまず、ヨーダド幾何学のパラダイムを脱却することが必要であり、モデリングのオントロジーを変革し、設計対象モデルは設計者のメンタルモデルであるべきことを提唱する。次に機械の詳細設計者のメンタルモデルの仮説を示し、幾つかの解証を示すとともに属性モデリングとの関係を考える。

なお、本稿では特に断らない限り、設計とは機械設計をいうと考えすぎている。ただし、機械という用語の皆様で抽象的定義を明確に立て上げていないため、本稿ではおおよそのところ、業界に成立した大
量生産の製品を除くと、それらの部品や製造設備を含んだ設備一も含むものとして、大量生産品の場
合には、大量の試作が可能であることが多い、新たな
技術情報を探集することができるようになっている。
そのため、大量試作が可能な製品において行われる
慣用的設計法（類似事例の蓄積と再利用のための
方法の一つとみなすことができる）を踏襲する必要が
ない。また、大規模な投資が可能であることから専用
システムの構築が可能となることもあり、筆者のいう
設計対象モデルの一般性の実現や後述するオントロジー
の変革も重要性が高まっている。したがって、プラント、
自動車、カメラ、家電品などの最終製品は、広義の機
械であるが、本稿ではいう機械設計の対象には含め
ない。

2. CADシステム構築における
情報・知識処理

情報処理システムを（数学的な）体系の具現化であ
ると捉える考え方がいままでに存在するようである。し
か、設計生産技術はいかんせんにせず常に革新
が進められ、新しい知識が生成される。このことが製
品の競争力の源泉であって、本質的な性質である。情
報処理をすでに確立された体系だけを対象とする（そ
のほうが簡単である）と規定するのは自己否定であ
って、むしろさまざまな不備があるとも知識情報処
理の技術によって、現実のダイナミズムに対処してい
く必要がある。

その過程で盲信されていた体系にも再検討の必要が
生じ、対象分野にパラダイムシフトを生起させるとと
もに知識情報処理のアイデンティティをも確立させる
こととなると考えることができる。特に、機械に関し
て設計生産に有用なCADシステムを構築するために
依頼するべき体系はほとんど存在しない。従来人間の
情報処理能力だけでは困難であった体系化を行うこと
が支援されなければならない。しかも、設計に関わる
諸活動は、より本質的な影響を人工知能研究から受
て発展するべきであると筆者は考えている。それは、
AI研究の特有の知識指向性である。設計あるいは工学
は、有用なものを作り出す過程であるから理論のよう
に物事を分析的に捉えて（美しく）体系化するという
指向性はもとより他の倾向である。エキスパート
システムは、さまざまな問題を抱えてはいるが、「有用
性」の概念を理論的根拠なしに導入した最初の試みと
みることができる。プロダクションルールは、それ自
身の理論的根拠を特に考えずに組み込まれ、その適否
はシステムの挙動が「有用」であるかどうかによって
決定される。さらに認知科学研究では人間の知的活動
を仮説および検証することが試みられている。ここに
の検証とは、仮説に基づいて作られた計算機プログラ
ムが、どのくらいの人間の挙動に似た動作をするかとい
うことである。仮説は、人間の知的感情と似た動機を
計算機プログラムに行わせるのにどのくらい有効かと
いうことで評価される。

それに対して機械系CADにおいて部品形状の表現
をユーラグド幾何学に基づいて行おうとすることは
は、理論的根拠を求める一例と考えることができる。
ユーラグド幾何学は人間の持つ理論的体系として最
初のものであって、これを否定することを主張している
わけではない。しかし、機械部品などの形状を次元
ユーラグド幾何学の枠組みだけで捉えることは有
用であろうか。実際の部品形状を、それが組み込まれ
る機械との関係を無視して精度などを考慮せずに、単
なる形として見る、それは平らな面があり、線や点を
といったユーラグド幾何学で考えられている概念に
対応する実体が観察されるだろう。ところが、現在の
加工技術では、原子レベルの構造を考えるまでもなく
表面に凹凸があり、微細な点の概念に対応する
ものは存在しない。機械形状に認識差が不可
避であり、微細な点は形状表現の要素とはなり得
ない。

ところで、パラダイムシフトは、科学哲学において
理解されているように純粋な理論的帰結というもので
はない。また、パラダイムシフトが識りであることを論理的
に証明することは難しい、パラダイムどうしを厳密
に比較することも困難である。しかし、人間の直観性
と自身の価値概念により、パラダイムの優劣を論ず
ることができおのずでできるようになり、結果的に効率や
能力といった功利的な観点での差異が生じてくるこ
とになる。立体形状のオントロジーをユーラグド幾
何学の枠組みから脱却させることもパラダイムシフト
の小さな例と言えよう。

3. 専門家のメンタルモデル

3.1 パラダイムシフトとしてのメンタルモデル化
（対象）モデルは主観を排して客観的でなければならない
と考えられることも多い。それぞれのものを
生み出す過程であり、実物を表現する以上、CADシス
テムも客観的な事を表現し処理するものとされる。
しかし、理詠的に厳密な客観は存在しないことが証明
されているとすれば、モデル化の過程において価値
概念の介在は不可避である。したがって、設計対象モ
モデルを客観的に構成するという要請を捨て去り、設計対象モデルは設計者が実現を希望する対象物の性質を記述するメンタルモデルであろうというパラダイムに立つことによって「有用な」CADシステムを構築することができるようになると考えられる。それぞれのメカニカルモデルを対象モデルとすると考えは上野らも指摘しているが、専門家のメンタルモデルは日常生活に関する一般人のメンタルモデルに比較してむしろ解明が容易であると考えられる。特に実物を作る必要があるような場合の専門家（設計者）のメンタルモデルは、加工可能性などに強く規制を受けるため個人による差異は抑制され、ドメインを共有する専門家どうしての対象物のメンタルモデルも共有される場合がある。そのため、むしろメンタルモデルというより概念モデルと呼ぶべきであろう。

次に、設計者のメンタルモデルを計算機表現できるとすれば、それを設計対象モデルとして利用することは、少なくとも以下の観点において有用である。

1. Human Interface.
2. Human Mimicry.

1) は、従来からCADシステムで要求されてきた人間にとっての設計対象の操作性や理解容易性である。インタフェースということは別個のものの界面を意味するが、メンタルモデルが適切に計算機表現されるならば同質のもの界面すなわち透明となりCADの大問題は相当に緩和されてしまう。

2) は筆者の造営であって、その意味は非常に素朴なものである。現在では統合性や一般性の高い対象情報は人間と図面の組合せによって担われている。人工システムの構築のためには、人間を「マネする」のが最初の姿勢である。さらに、設計のような人工物を生み出す過程において、作り出された設計対象物は、それが結果としてどのように認識されようとも、少なくとも最初の要求は人間が発したものである以上、人間の要求する意図表現に対して異種の視点あるいは価価概念に基づくものであってはならない。したがって、(2)の観点は設計対象モデルにとって本質的であるということになる。

3・2 メンタルモデルとしての設計図面

設計図面は設計対象物の客観的な表現とされてきた。上野もそのような立場である。しかし、ロジック回路図などは、見方を変えれば希望される機能が記述されているものであり、それをトランジスタレベルに詳細化した回路図も浮遊容量や寄生トランジスタの発生（このような見方そのものが目的論的で客観的なものではない）を考えれば、シリコン基板に現れるべき局所機能の結合関係を表現したものである。より具体化されたマスク図面ですら、シリコン基板表面の物理学的な写しというわけではないし、その必要もない。このように、電子回路図のように表記法が確立しており恣意の入り込む余地がないと思われがちな図面も、本質的には対応する過程における設計者のメンタルモデルであると考えることができる。

機械図面についても、部品形状の正投影図であると捉える向きもあるが、図面の書き方そのものがそのようになっている。図1は、その例の一部である。

![図1 投影図法に反する機械図面の書き方](https://example.com/graph1.png)

![図2 一体として鍛造されるシリンヘッドの理解](https://example.com/graph2.png)
対象の理解が容易になるように、言い換えるとメンタルモデルとの対応づけが容易になるように幾何学的な投影法に違反した書き方となっている。また、図2は正式の設計図面ではなく説明図の例ではあるが、一体で繋がされるシリンダヘッドを“ロアデッキとアッパデッキ、それに周囲の壁で囲まれた「箱」である。そこに取り付けられる点火プラグのボス部や吸排気ポートといった管状のもの”という箱型構造として捉えていてある。このような説明図も設計図面に準ずるものとして活用されるが、設計者の対象理解をそのまま反映したものとなっている。

3・3 統合性のためのメンタルモデルの抽象度

設計は、一般に文字どおり抽象的な概念設計から徐々に具体化され詳細設計、実施設計へと設計対象物が具現化される過程であるとされている。筆者は、佐伯の「半具体・半抽象」の指摘のように、概念設計が純粋に抽象的な概念操作であると考えているわけではないが、それでも発想が重視され加工などの制限が少ないため、その過程の設計者のメンタルモデルは個人による個別性が高く、その計算機表現は相当に困難が予想される。それに対して詳細設計レベル程度までに具体化された段階では、かなり類型化されてきており、設計者の個人差も少なくなっている。

実際のところ、機械図面として製造、検査など多数の活動から利用されるものは、詳細設計レベルの図面である。より顕著な例はプランプ計測におけるP & ID (Pipining & Instrumentation Diagram)であろう。この図面が作成されるのは詳細設計においてであるが、その過程は少数の設計者によって設計が行われるものに対して、計装、建装などそれぞれ多数の設計者の関与する大規模な活動が、すべてP & IDを参照する形で統合され並行に設計が進行するという。設計対象モデルとしての統合を実現するためには、設計解として具体化の終了した詳細設計の過程においてモデル化を行うのが最も適切であると考えられる。

4. 人間の対象理解の仮説

ここでは特に形状理解に関係すると考えられる幾つかの仮説を検討しよう。

4・1 ポアンカレの視空間特性

ポアンカレは、ユークリッド幾何学における空間の性質と視空間特性を以下のように比較している。ポアンカレの視空間とは、視覚を介した空間理解と同義と考えられる。

(1) 幾何学的空間特性：連続性、無限性、3次元性、均質性、等方性

(2) 視空間特性：大略連続性、有限性、2次元性、非均質性、非等方性

【1】 大略連続性、非均質性と注意の焦点

認知科学研究において注意の焦点は、注意する部分とそうでない部分との区別であるが、形状に関してはポアンカレの大略連続性と非均質性に対応する。また、佐伯の「半具体・半抽象」も空間理解に関しては同様に位置づけられる。

【2】 2+1/2次元思考あるいは正方形からの思考

2+1/2次元はソリッドモデル研究の初期に用いられた考え方で、3次元形状を平面形状とその回転や展開によって表現する。このとき、等方的な3次元形状の表現が2次元形状とその移動の仕方に圧縮されることからこの名称がある。一方、人間が対象の形状あるいは位置を厳密に決めようとするとき、どうしても「正方形」から考えて考え、機械図面の投影も正投影法が主流であるのもこのことに対応するが、いずれにせよポアンカレが指摘するように平面視野で思考が行われているものと考えることができる。ただし、正面に対する深さ方向が全く無視されるわけではないから、2+1/2次元思考と呼ぶことができる。

4・2 市川の同型性

市川は、人間の対象理解を助けるために対象と同型的な図式（同型図式）を提示することを提案している。対象のメンタルモデルが、対象理解の鍵となる視点を介して対象自身と同型であることを主張していると見ることができる。メンタルモデルの計算機表現において同型性を保存する視点を発見する活動が必要となる。

4・3 依存関係による構造化

人間の対象理解が何らかの構造化を伴うものであることは承認されているが、その構造化は拘束条件のような反射的な関係によってではなく、依存関係によって行われると予想される。これは筆者個人の仮説ではあるが、設計や製造において要求の拘束条件の列挙であっても、それらは理解されること（部分的に拘束が解消され）依存関係に変換されてしまうと考えられる。

これは、理解の本質である可能性が高いと内観されるが、少なくとも設計者の理解においては、製造法や機能の発見のメカニズムからの制限に起因した性質である。後述する概念ベクトルモデルも例外であるし、機械要素（ベアリングやねじなど）の諸元は関数関係や多価
従属関係にあることがわれている\cite{10}. また、長澤のDSP\cite{11}と呼ぶ設計言語が、もとになった一般的な拘束条件解法言語 ADL を、依存関係を主としてプログラムを記述するように変更した（言語自身の問題解決能力を制限した）ことによって、かえって設計者から相当な好評を得ていることも傍証となるよう。

5. CONMOTO システムにおける部品形状表現

筆者は、ソリッドモデルに代わる設計対象モデリングのために、詳細設計者のメンタルモデルの仮説の計算機表現として CONMOTO (CONceptual MOdeling, Transformation and Organization) システムを開発している\cite{12}. ここでは前章の仮説と機械図のよう詳細な性質を組み合わせたシステムの意味論を述べる。

5.1 機械部品記述の粒度

機械の機能（直観的な意味で用いている）が主に部品間の面接接触によって発現することから、CONMOTO では、部品表面においてほかの部品と接触する機能を担う領域を部品記述の構成要素とし、部品として名づけた。部品表面、同一の機能を持つと意図された連続した有限領域（すなわち面分）であり、表裏の区別と表現上の便宜としての境界（すなわち稜線と頂点）を持つ、部品表面の形と法線方向の位置は、部品の精度ひいては機械全体の性能を左右するために正確に加工されることが要求され、モデルの重要な属性であるが、その境界の位置、すなわち領域の広がりに厳密性は要求されない。CONMOTO では、部品表面の形を円面と円筒面の記述が可能である（図 3）。これに円錐面を平面同様に加えれば、機械部品のほとんどが記述可能である。

一方、部品表面を理想的な平面や円筒面と捉えるのでは粒度が粗すぎる。精密に加工した部品表面にも材質に応じてさまざまな大きさの凹凸が生じるが、その形状が部品どうしの接触に強く影響を及ぼす。したがって、設計者の意図として適切な形状となるよう指示を行う必要がある。明らかにように極端に微小な凹凸を問う必要はなく、従来から機械加工物の表面性状指示の粒度として ISO/JIS では幾何公差（全体の大きさに依存する 0.1 mm 程度の範囲）と表面粗さ（0.01 mm 程度）が規定されている。CONMOTO でも部品表面の形状としてこれらを表現するが、さらにそれぞれに対して個差と呼ぶ、許容範囲内にある偏りの傾向を不正表面の形状に加えているのが特徴である。図 4 に幾何形状 Elem の例を示すが、部品表面が幾何公差の範囲内で凹凸あるいは凸などの傾向を持つことを指示している。このような傾向がずり合せなどにおいて大きな影響を生ずることが知られている。なお、部品表面の形状、すなわち部品表面の変曲を考慮しないことの利点が公差や凹凸の表現においても生かされている。

5.2 基準の表現：概念ベクトル

製造のための過程するに、加工、検査、組立などの工程では、その実行に誤差が不可避である。その誤差は、鍛造に代表される型からの転写を利用する成形では化学変反や塑性変形なども関与するが、機械製品製造の核となる機械加工（プラスチック成形品などの型金製で機械加工されることが多い）では、穴あけ、ポケティングあるいは測定などといった個別操作を行うときの位置決めの精度に主因がある。位置決めの精度は、特に操作を行う基準をどこに置くかが最も重要な問題となる。この問題は、機械面面では寸法をどのように記入するかという問題に対応し、設計の本質であると考えられている。以往は寸法面の記入の仕方から、面図を読む人間が基準どこになっているかを読み取るようになっていたが、最近はデータを呼ぶのが明示的な基準を面図に記入する
るようになってきている。また、場合によっては、形状が基準のとり方に依存して決まる場合もある。
基準には以下のような重要な性質がある。

機械部品には、部品全体の基準、すなわち直接的あるいは間接的にほかのすべての基準に対して基準となる唯一の基準が存在する。
このことを理解するために説明しよう。一つの基準について、それぞれの位置を確定させる（加工、計測などの行為に対応する）ための別の基準が確定されていなければならず、そのような依存関係が存在する。基準の間には位置決めの依存関係に基づく順序関係が存在することになる。
もし、一つの部品の基準の順序関係が複数かつ独立に存在するととき、一つの部品の中に互いに位置的には全く無関係でなくてはならない部分が共存するということを意味する。これは、同一の部品であるということと矛盾する。すなわち、同一の部品の中には、独立でなければならない基準の順序関係は複数存在しない。

CONMOTOでは、機械設計において基準が本質的であること、および人間の空間思考が2+1/2次元的であることに対応させて、局所的空間座標系を導入し、概念ベクトル（Conceptual Vector：CV）と呼んでいる。前述の部品素は概念ベクトルを用いて空間的に配置される。ベクトルという名は視線に対応した主方向を持つという特性を強調するために用いており、数学におけるベクトルにはまっていない。概念ベクトルには、図5に示すようにの直交座標系と円筒座標系の2種類があり、それぞれ平面ベクトル、円筒ベクトルと呼んでいる。図のM方向が主方向で視線に対応する。
概念ベクトルは、その主方向が視線となると同時に、座標系として設計における基準に対応し座標原点である原点を通る面が基準となる。そのため、部品素は概念ベクトルが張る面の上に置かれることになる。
設計者が新しい視線を選んで異なる方向で思考を始めるとき、別の概念ベクトルを作り、それをおい新しい正方向とする。すなわち、現在の概念ベクトルから別の概念ベクトルの位置と方向を測っておくことになる。さらに別の概念ベクトルが必要であれば、また新しい概念ベクトルをすべてに存在する概念ベクトル

(a) 鉛直軸周りに30°回転し、その後回転し75°となるように倒している

(b) 図(a)のCONMOTO表示、この場合、上部の穴の周りのみが部品素となるものと仮定してモデル化した例である。数字は矢印で示した概念ベクトルを定義した順序を示す。
①の周りに30°回転して②をおき、②の周りに15°回転して③が置かれている。

図6空間的に線いた形状の段階的定義

208 人工知能学会誌 Vol. 7 No. 2
のうちのどれかを配置する。通常の基準の唯一性から、部品全体の基準となる概念ベクトルが一つ存在する。したがって、部品を構成する概念ベクトル全体は、一つの概念ベクトルを根とする木構造をなすことになる。この木を、概念ベクトル木 (CV木) と呼んでいる。

CONMOTO では、別の概念ベクトルを配置する際の新しく指定できる主方向の向きを制限している。ソフトウェアとしては任意的方向を処理することが可能であるが、システム設計として積極的に制限している。なぜなら、人間の 2+1/2次元思考では、オイラー角のように一部に 2 次元的な向きを指示することは困難であり、回転に見るようにいくつかの回転に分割して空間角度を指示するのが普通であるからである。この図の場合、底面に垂直な軸周りに回転した後、垂直に対して傾けたものと解釈される。

概念ベクトルは、暗黙的には加工時の断面と対応をすることができるが、土木機械分野では計測機械に至るまで、すべて 2+1/2次元の幾何を持つという観察を反映させたものである。これらは、ほとんどが「回転+送り」というように分割して操作するようになっており、任意角を設定できるような治具は通常、精度が高いため、同様に 3 次元 N Cによる加工は、(2+1/2次元的な) 専用工作機械の加工に比べて精度が高いのが普通である。

5.3 部品内部の主観的構造

概念ベクトルあるいは基準が木構造をなすことを見たが、その木構造の作り方に自由度がある。回転にしばしば用いる簡単な構造であるが、電に見えば金属製の直方ブロックの中心に穴があけてており、周りにねじ穴が 4 個あると見ていたけがたい。これを設計者が概念ベクトル木とする仕方は少なくとも (a) と (b) の 2 通りが考えられよう。 (a) の場合には中心の穴に対して周りの穴が位置決めされるが、(b) の場合にはすべての要素が互いに独立である。どちらがよいかは一概には決められないが、一般的な傾向としてフランジ等を取り付けるときは (a) のほうが適しているといえる。いずれにせよ、非専門家には均質に見える金属ブロックに物理力学的構造とは全く異なる、設計者の意図に基づく主観的な構造が与えられていると考えることができる。そして、加工にその構造に基づいて行われ、結果として差し生じ方に影響が現れることになる。

人工物は、電的に現れているか否かは別としても、信号と設計者の意図に基づく構造をすべてが持っていると考えたほうがよい。もし、現象しか存在しないとき、その構造を知ることは困難であるが、加工技術などの制限から相当の推定をすることができる。逆に、現象から製造技術の水準を推定するためには、対象物に与えられている意図構造を推定すればよい。これが機械工学分野の Reverse Engineering の要因である。

5.4 機械図面との同型性

図 8 は、米国の教科書からの例であるが、鉄製の部品の例である。正式な機械製図図面ではないが、幾
6. 属性モデリングとメンタルモデル

機械設計のための形状のオントロジーを述べてきた、知的 CAD をさらに進めるためには、さらに形状に深く関係する問題が存在し、その中の一つを指摘しておく。

属性モデリングパラダイムは、筆者も提唱者の一人である知的 CAD 構築のための考え方であるが、対象がデジタル論理回路のようにすでに属性化されているものに関しては画期的なものと映らないかもしれない。しかし、情報処理される属性と実際の事物との対応は、機械設計では自明でない。すなわち、意匠デザイシンの過程において、「名づけ」と呼ぶ階層が観察されるものを報告している[119]。名づけとは、アイディアスケッチ上の具体的な形とその機能に対して共同作業中のデザイナーどうしの合意のもとで名づけ、それ以降の過程で参照することである。これは、属性化において形状に関する情報を含む場合には何らかの方法で基準を名づけし形の意味をもつ（意匠との対応づけ）を制限しておく必要があることを強く示している。同様の問題は、機能に言及する場合にも生じ、吉川の設計論によれば、あるものの機能とは、対象の挙動に関して認識された概念である。このことは、我々の直観によく合致することであって、例えばあるパレットが地点 A から B に移されると、それはパレットが「搬送」されたと認識される。一方「搬送」という機能を代表する名詞だけからは、さまざまな具体例が想起されはするが、必ずしも機能を明確に規定したことがなければならない。したがって、機能概念に記号ラベルをつけ、知識処理の対象としようとしても少なくとも概念定義において大きな制約を受け、直観と相当異なる記号処理が行われてしまう可能性がある。

地点 A から B に移されたと、それはパレットが「搬送」されたと認識される。一方「搬送」という機能を代表する名詞だけからは、さまざまな具体例が想起されるが、必ずしも機能を明確に規定したことはない。したがって、機能概念に記号ラベルをつけ、知識処理の対象をしようとしても少なくとも概念定義において大きな制約を受け、直観と相当異なる記号処理が行われてしまう可能性がある。

筆者は、目的属性と実現構造と呼ぶ区別を設計対象の属性に与えることを提唱している[119]。実現構造は実体そのものメンタルモデルで前章までに述べてきたことに対応し、目的属性は実体の意図される形状情報を含む挙動のメンタルモデルであるとする。このとき、目的属性はすべて実現構造を直接あるいは間接的に参照することによって定義するものとする。もし、実現構造が設計という目的において実体と対応づけられて進行が保証されるならば、機能の意味づけが明確となるという大きな利点が見られる。この枠組みを承認するならば、機械設計においてはただで解決されていない設計仕様の厳密記述が可能となる。

7. おわりに

機械設計における設計者のメンタルモデルについて述べてきた。ただし、詳細設計レベルの設計対象物の静的な表像に限定されている。設計支援の第一歩としての有効性はとりあげて十分であるといえるが、実設計過程で基準の交換などモデルの部分的変換が行われており、これらは動的問題を組織化する必要がある。また、設計構造あるいは現象の相互の因果説明を観察すると、素朴な力学的視覚世界の存在が仮定できる。これは対象物に関する動的なメンタルモデルであり、物理学とは異なる機械設計者のためのオントロジーが必要である。P. J. Hayesが以前に提唱している素朴力学の研究[119]が人工知能研究において盛んになることを期待して本稿の結びとさせていただく。
参考文献

1. 伊藤公俊：対象の計算機モデリングと設計, 日本ロボット学会誌, Vol. 4, No. 4 (1986).
8. 松原良二：空間の認知, 現在基礎心理学II (編) 鳥居修次 (編), 東京大学出版会 (1992).
9. 河川伸一：決定における規範的理論と直観的推論, 小橋道之, 栄, 言語を支援する, 東京大学出版会 (1982).

著者紹介

伊藤 公俊（正会員）

March 1992 設計対象物のメンタルモデル