セナザ融合による多物体位置推定・追跡のための近似推定手法に関する研究

金崎 弘文
Hirofumi_Kanazaki@t.rd.honda.co.jp
東京大学大学院工学系研究科
指導教員：増 浩一
博士（工学），2008年3月17日 取得

Keywords: Variational approximation, multiple target tracking, Bayesian learning

概要：本研究では、物体位置推定という問題を取り上げる。特に、人間が活動する日常生活環境において、人間が日常的に使用する物体の位置を推定することを目的とする。生活環境を対象とする位置推定・追跡システムには、汎用性、低コストといった特徴が求められる。本研究では、これらのことから位置推定手法の枠組みの検討を行う。

具体的な技術課題は
- センサの精度のモニタリング
- 多物体の状態を推定する効率的な推論アルゴリズムの構築
- 前述した研究に関して、ベイス的なアプローチに則って、各センサを検知する生成モデルの構築を行い、その後、推定対象物体数が増加した際に、厳密に求められるのに必要な計算量が著しく増加する問題がある。これに対して、本研究では近似推定のアプローチをとる。特に、決定論的近似として呼ばれる変分近似および変分ベイジアン法に基づく推定手法を提案する。また、必要に応じてモンテカルロ法など統計的近似手法と組み合わせて利用する方法を検討する。

本研究ではセンサ（カメラ、レンジセンサ、RFIDタグリーダ）の精度モデルを構築し、複数の物体の存在位置を確率密度の形で出力するシステムの構築を行った。センサモデルの構築は、測定対象の物体とセンサとの幾何学的な位置関係とノイズの特性に基づいて行う。計測精度の確認は、近似推断アルゴリズム（VADAF: Variational Approximation Data Association Filter）と変分ベイズデータアソシエーションアルゴリズム（VBDAD: Variational Bayesian Data Association Filter）の二つを提案する。VADAFは、複数物体を扱う際の計算量の減少のみならず、物体相互の制約条件などを考慮しない簡略化された状況で適用可能な手法である。VBDADは、物体相互の制約条件を示し、物体の増減、センサ自身の位置推定など、扱える諸条件がVADAFよりも広範にわたる手法である。また、実験により、提案手法によって効率的に物体位置の推定が可能であることを示す。


渡邉 纪文
norifumi@lab.tamagawa.ac.jp
慶應義塾大学大学院政策・メディア研究科
指導教員：石崎 俊
博士（政策・メディア）2007年12月12日 取得

Keywords: 鎌式情報処理, 結び付け問題, 頻の多義性解消, ニューラルネットワーク, ダイナミカルセアシンプリ

概要：人間の認知活動は、思考の神経細胞が形成する膨大なパルス列系に基づき、それらの統合的な活動と考えられてる。しかしこのような脳内活動を表裏する方法は未発表である。この問題を解明することには、脳において伝達される情報パルス列上に表現し、そのダイナミックスをシミュレーションによる研究がある。本学位論文では、そのような脳活動を踏まえ、コンピューターシミュレーションを用いて人間の認知過程をモデル化する計算機神経科学に基づくアプローチを採用し、視覚の結び付け問題と映像の解釈性解を行うシステムを構築した。

我々が認知過程を扱うための、個々の神経細胞の活動を表表現するだけでなく、認知過程で発している多様な情報を取り扱い処理することができるモデルを提案し、それらを統合したシステムを構築する必要がある。そこで本研究として、人間の認知過程に対し、統合的な解釈を与えるためのモジュール構造および情報の符号化アルゴリズムの基盤を提案し、さらにその検証に向けた構築を示した。具体的には視覚情報と言語情報に対する、その計算理論を駆用、脳の情報処理モデルの一つであるマイカルセアシンプリに基づいた神経回路モデルの構築、およびシステムとしての実装を実現した。

さらに人間の脳は、人工された情報とその状況に応じた認知および推論などの能力的な情報処理を行っている。従来の脳の情報処理における能動的な選択をもつモデルは、内部に有る記憶に基づき、重要な情報を求めるとする場面に応じた活動をすることで、適切に変化する情報選択を行った。しかし人間が知識の情報は状況により変化するため、一つの特定の記憶レベルでは表現することはできない。そこで本研究として、ダイナミカルセアシンプリによく神経細胞の動的ネットワーク形成によって、視覚情報の分離および統合を示すと、映像の解釈性解を解消するシステムを構築した。