Development of Medical Ontology for Clinical Knowledge Processing

Kazuhiko Ohe
Graduate School of Medicine, The University of Tokyo.
kohe@hcc.u-tokyo.ac.jp, http://www.m.u-tokyo.ac.jp/medinfo/

Ken Inami
ken@hcc.u-tokyo.ac.jp, http://www.cdbm.m.u-tokyo.ac.jp/

Keywords: medical ontology, knowledge processing, decision support, standard terminology.

1. はじめに

医療の場では、電子カルテシステム（以下、電子カルテ）と呼ばれる情報システムの利用が徐々に進められている。これらはもとより、これまで紙に記載していた診療記録を医師や看護師が直接、専用のコンピュータシステム上で入力し、データベース上に保存して診療に利用するものである。このデータベースに蓄積される診療情報を、その患者の診療の記録と照らし合わせて、安全な診療を実現するための注意喚起や、診療上の意思決定過程の確認、電子カルテ入力支援など、診療上の種々の支援に積極的に生かすという考え方がある。また多くの医療機関の電子カルテデータベースを統合したデータベースを利用して、新たな医学的見解の抽出や、診療行為の結果期待、類似症例の検索、まれな副作用や疾患の頻度の正確な把握などに役立てたいというニーズも強まっている。

電子カルテで蓄積される膨大な診療データをこのような目的で活用することは、医師の質の向上をもたらすことができ期待されているが、その実現のためには、記録時点での用語やコードの標準化や記録様式の標準化、データベースの統合、意味的処理を行うための知識ベースとしてのオントロジーの開発など、解決しなければならない技術的課題も多い。本稿では、こうした課題に焦点を当てて解説するとともに、特に臨床医学知識処理を目指した医療オントロジーについて述べる。

2. 診療情報のデータベース

2・1 衛生情報の形式と標準化

電子カルテには、処方箋や検査結果など医師がかつての医療状や診断に指示して実施させた医療行為に関する指示内容、検査結果などその指示に基づいて実施された医療の結果、診療過程で得られた患者の症状に関する情報や手術の実施内容を説明した手術記録など医師自身が遂行した医療行為の内容、診断病名や医師の判断結果や意思決定のプロセスの説明など、診療における多様な情報が記録されている。

診療情報のデータベース構築や利用において最大の課題は、その患者の診療だけでなく利用するのではなく、さまざまな計算機取扱に耐えるために、可能な限り構造化データ形式で管理することと、数値や画像データなど計算機から出力されるデータ以外のデータについて、使用される医学用語を標準化し、標準コードに変換してデータベース化しておく必要がある点である。

診療データベースにおける用語コードの標準化はこの20年以上にわたる関係者で継続されてきた課題であり、医師、医薬品、検査項目などについては国と学会などでより一定の標準化がなされ標準化団体で公開されており*1、多くの医療情報システムでのその採用が進みつつある。

処方せん情報や検査指示などは、あらかじめ使用される医薬品や検査項目について標準マスターと呼ばれる標準用語コードデータベースがあり、コード化されたデータとして登録することができる。診断情報である病名情報は、最も基本かつ重要な意味をもつ患者の診療情報であり、医師の請求基準にもなるため、厚生労働省が標準病名による記載を事実上義務づけており、標準病名と病名コードのマスターとして標準病名マスターやが開発、公開され、そのマスターから標準病名を検索してコーディング支援するソフトウェアツールが開発され公開されている*2（図1）。

---

*1 醫師法全国医療情報システム開発センター, MEDIS標準マスターサイト, http://www.medias.or.jp/p_hyojyun/medias-master/index.html, (参照2010-02-02)

*2 標準病名マスターサイト Artistsホームページ, http://www.dis.h.u-tokyo.ac.jp, (参照2010-02-02)
2.2 診療データベースの統合化

電子カルテを導入している医療機関はまだ全国の15%程度であるが、今後10年程度でかなりの医療機関カルテは電子化されると思われる。多くの医療機関の電子カルテデータベースを何かの方法で一つのデータベースに統合できると、理論上は全国の診療データを解析することができるようになる。しかしこれ現在、こうしたデータベースが存在しないため、例えば全国における1年間の胃がん患者の手術件数といった単純なデータさえ推定値しか得られない、手術種別ごとに手術前1か月以内にどのような合併症（手術後に発生する副次的な病気）が発生しているかといったデータは手術成績を評価するうえで非常に重要であるが、こうしたデータは特定の学会に所属している医療者や協力機関が学会の呼びかけに応じて回答したものを集計したりする方法のみで得られているのが現状である。

こうした現状を解決しようと政府でもIT戦略の一つとして、医療における統合データベース構築を目指そうという動きが進められている。著者らも、電子カルテのデータを患者自身の生涯の医療情報として管理し診療に利用できる枠組み、それに共存する形式でデータが自動的に匿名化されて統合型のデータベースが構築される形態（図3）を提案しており、2009年7月に公布された政府のi-Japan戦略2015における日本版EHR（Electronic Health Record）の考え方でも同様の枠組みが提案されている。

また、電子カルテデータベースを統合するというアプローチではなく、学会主導で学会員に呼びかけ、学会員が実施する手術について入力項目を定めてWebベースで手術情報を登録し学会で解析しようという手術症例データベース構築事業（National Clinical Database事業）を、日本外科学会をはじめとする主要な外科系学会が合意して開始しようとしている*3。

こうした統合型の医療データベースを利用すれば、単に手術とその成績、医療品処方とその副作用といった。

---

*3 http://www.jsocc.or.jp/other/info/info20100203.html
医療行為とその結果に関する統計量を得られるだけでなく、疾患における症状・検査所見異常の出現頻度、直面している患者を統計的に距離の近い過去症例の検索とその臨床経過の提示、極めて出現頻度の低い特異的な異常の発見などに貢献すると考えられる。

3. 医療オントロジーの必要性

これまで述べてきたように、診療情報のデータベース化は重要であるが、単に記録して診療上必要に応じて参照するというカートルとしての利用だけでなく、診療面で質と安全部向上に生かすというニーズや、研究面での大規模データベース解析などの利用ニーズが高まっている。そのために、本来はデータベースに情報を登録する時点で情報の構造化を標準化された用語とコードでの登録が必要になるが、現在の情報システムの機能では日常診療中にそれを医師が行うことは不可能である。

図4は、急性心筋梗塞が疑われるような胸の痛みの症状で救急受診した患者の電子カルテルに記入された自然言語文例である。急性心筋梗塞は心臓に栄養を送っている冠動脈（かんどうみゃく）という細い血管の一部が詰まったり狭窄したりすることにより、心臓に十分な酸素が供給されなかったり心臓の筋肉細胞が酸素不足により死んで壊れていく結果、急性心胸痛が起こるもので、数時間以内に急死の危険がある疾患である。余談であるが、年間3万人程度の救急受診患者に実死しており、受診時に急性心筋梗塞を疑って検査と処置をするかどうかで生死が分ける。典型的な急性心筋梗塞では、冷汗を伴うような左胸部の痛み、特に心臓圧迫されるような痛み、左上肢の保護するようなしびれや痛み（放散痛）などがあるが、それらが出始めて、なんとなく歩いたりすると胸が痛い、一時的にニトログリセリンという薬を舌の下で溶かすと痛みが解消されるはずという疑問と呼ばれる疾患の症状が出てくる。急性心胸痛なのか検査しないと区別がつかない段階では、急性冠症候群という名前でひとくくりにして、対処することがある。

図4電子カルテルの文章からの重要情報の構造化

図5構造化された診療情報と概念関係イメージ

実際の診療過程では、患者を診て胸部の痛みの症状であると知ったかどうかのような概念関係の頭の中で構築し始め、それをもとに関連的な情報収集を行い、図の各概念の関係を直観的にイメージを形成していく。しかし、前述のように医師が患者の状態を記述した自然言語文文を手元に残さなかった場合には、文章構造化情報の整理→概念関係イメージの構築という順序で処理することが、実際の診療を無理に考察している場合では、きっかけとなる症状→概念関係イメージの構築→構築的な情報収集→構築化情報生成→カルテル文章作成、という順（もちろん一部は同時並行的であるか）で処理が行われているのが実態である。ここに、あらかじめ入力テンプレートを用意していてもそこで予め方法で情報を取り入れさせようという入力支援方法が不評で使われない要因がある。

診療情報を入力していく過程で逐次的にこのような患者の状態に関連する概念の関連を計算機内に形成していくことは、患者文書依存型の入力支援や動的テンプレート提示機能の実現に大きく貢献するのではないかと考えている。また、従来において発生する入力情報の不足、用語やフレーズの意味を解釈したうえでの標準化が必須の過程であり、患者状態を表すための概念関係の計算機内での構築は、重要な役割を果たすと期待される。さらに、このような情報入力段階での処理が、統合データベースを構築していくうえで極めて重要な役割を果たすと考え
4. 医療オントロジー研究開発

4.1 疾患概念の定義

同研究開発では、医療オントロジーを構築するにあたって、まず最も基本となる「疾患」（=いわゆる病気）の概念を定義することから始まった。心身に何らかの原因で「通常とは異なる状態」が発生し、それが次々と別の状態を引き起こし、その結果として心身がいっそうとはいえ、何が自覚したり、医療者により他覚されたり、検査により異常結果が出るような状態を引き起こす。これらを医療者が、既知の「疾患と呼ばれている」概念が定義している状態と同様の状態が患者に発生していると同定（=診断）したとき、その患者はその疾患にかかっていると診断される。したがって、疾患概念は心身の何らかの異常状態として定義でき、その疾患の必要十分条件としての異常状態を記述することによって記述できると当時は考え、まずその方針で開発を進めめた。

例えば糖尿病の概念は「糖尿病は、インスリンの不足による慢性高血糖を主症とし、種々の特徴的な代謝異常を伴う疾患群である。その発症には遺伝因子と環境因子がともに関与する。代謝異常の長期間にわたる持続は特有の合併症をきたすやすく、動脈硬化症をも促進する。代謝異常の程度によって、無症状から類似に至る幅広い病態を示す」と日本糖尿病学会のホームページ（HP）に記載されている*5。当初の方針はこうした記述の前半部分を概念化するべく、糖尿病の必要十分条件として、「持続的高血糖が異常状態を記述し、発症する種々の症状や検査異常を起こり得る可能性のある状態として記述していた（図6）。ここでは、糖尿病は「持続的高血糖状態」を必要十分条件としてもつ疾患として定義されており、このp/o（part-of関係）は数個制約が1で定義されており必須であるのに対して、血液検査異常である高HbA1c状態、症状である多尿は状態によっでは現れることがあるので数個制約は0または1としている。

図6 糖尿病を「持続的な高血糖」と症状で記述する考え方

この図6ではオントロジー構築ツール「法造」の出力を用いている*6。左上部の糖尿病が記述対象クラス概念（対象ノード）であり、p/oはpart-of関係スロット、a/oは属性スロットへの関係をそれぞれ表し、その右側の数字は出現個数制約で、1は必須、0は任意を意味する。スロットに対する左側の枠はその対象概念における役割（ロール）を表し、上部に「ロール名」、二重線の枠内はロール名を担った「ロールホルダー」名で、右側の枠は、そのロールを担う「プレイヤー」を制約するクラス名（またはロールホルダ名）を表している。例えば図6では、糖尿病クラスは疾患名（必須）、糖尿病性高血糖（必須）、高HbA1c状態（任意）、多尿（任意）をpart-of関係としてもち、このうち糖尿病性高血糖は、Formal疾患クラスで主病態として定義されているロールホルダ「持続的高血糖状態」をクラス制約としており、糖尿病クラスのものとは糖尿病性高血糖というロールホルダ名で参照できることが表されている。概念ノード間に関係線が張られている（図6で糖尿病ノードから右斜め方向に伸びる3本）はクラス間のis-a関係を表しており、superと付記されている側が上位クラスである（図8、図9も同様に見ていただきたい）。

この記述方針では、例えば「治療中で良好な血糖がコントロールている糖尿病」は、糖尿病のもつ「持続的高血糖状態」という性質を受け継がないので、糖尿病のサブクラス（下位概念）といえないこととなり、疾患
てその治療状態との意味の上下関係を的確に記述できな
い、こうした問題も適切に取扱えるようにしたため、
疾患概念は、「その原因と途中で起こる異常状態を含め
た一連の状態変化の連鎖と、それにより引き起こされて
いる 1 以上の結果状態との総体」として捉えるのが適当
であるという立場をとることとした。
糖尿病を例にすると、糖尿病とは、身体の日常生活
におけるインスリン機能の必要最大値に対して、インス
リン作用の供給可能な最大値が低いという状態が、何ら
かの原因により引き起こされている。その結果として、
インスリン需給バランスが崩れることができれば血糖が上
昇し、崩れていないければ血糖が正常を保っていることも
ある状態である。それにより高血糖が持続する状態が起
こればさまざまな合併症が引き起こされること」とし
て定義される、こうすることにより、「インスリン注射
により需給バランスがとりあるいは良好に血糖がコ
ントロールでき、結果として血糖が常時高いわけではない
か、注射をやめれば高血糖が持続する」といった糖尿
病のコントロール状態も自然に形成記述することができ
る。またこのように定義された糖尿病において、特定の原因を
追加記述することにより、特定ではない原因により起こ
っているとした記述した概念である糖尿病よりも、意味
的に変化している点で糖尿病のサブクラス化することに
なる。例えばステロイド糖尿病は、ステロイドホルモン
剤と呼ばれる一群の薬剤の投与により、一時的に引き起
こされるインスリン需給バランスが崩れ、糖尿病と全
く同じ状態が発生した状態を指すが、このような状態も
糖尿病の下位概念として容易に記述できる。
前述した日本糖尿病学会 HP にある糖尿病の概念の後
段部分「代謝障害の長期的立場における慢性合併症を
来たすやすく、動脈硬化症をも促進する、代謝異常の
程度によって、無症状から腎臓に至る幅広い重病を示す」
という記述は疾患の定義を一般的に考えるうえで意味深
い。糖尿病では、高血糖が持続する結果として引き起こ
される種類の身体変化状態を総体として捉えているこ
とになる。一方で、糖尿病特有的合併症という表現で記
述されている個々の身体変化は、すべての糖尿病患者で
常にすべてが発症するわけではない。その重症程度、経
過の長さ、治療の経過などさまざまな要因によって、見
られるものもあれば見られないものもある。また上記の
記述には「動脈硬化」のように糖尿病以外の原因によ
り引き起こされる別の疾患に相当する異常変状態も含め
ている。

このような、ある疾患の定義で記述される状態がさら
にその後に連鎖的に引き起こす状態があり、それらを全
体として捉える広範な状態連鎖を概念として扱う必要が
あると考え、それらを対象疾患連鎖と呼ぶことにした。前
出 HP での定義の後段部分は、この対象疾患連鎖
に対応した概念を記述していると考えられる。一方、対
象疾患連鎖は必要に応じて計算機処理により形成できる
ことを前提としたうえで、疾患概念において必要十分な
部分連鎖だけを定義として記述したものが個々の疾患概
念の定義であると考えることとし、これを注目疾患連鎖
と呼ぶことにしている。

以上の考えを図 7 に、糖尿病の例を図 8 に示す。図
7 で個々のポックスは心身内で見られる一つの異常状態
で、矢印は因果連鎖の方向を示している。また、図 8 に
こうして記述された糖尿病、1 型糖尿病（インスリン依
存性糖尿病）、失明を伴った糖尿病のそれぞれの記述と
相互関の関係を示す。ここでは、糖尿病の下位概念とし
て常時インスリン不足糖尿病、必要時インスリン不足糖
尿病、失明を伴った糖尿病があり、常時インスリン不足
糖尿病の下位概念に 1 型糖尿病が定義されている。

「疾患連鎖に現れるすべての異常状態」をすべての疾
患について集合をとると、心身に起こるその異常状態
の連鎖のネットワークが形成でき、これを汎用連鎖と呼
ぶことにしている。汎用連鎖は、新しい疾患概念を形成
するうえでその基盤となる連鎖であり、知識発見処理な
どにおいて役立つもののと考えられる。

疾患を異常状態の連鎖のサブセットと捉えるこの考え
方は、コンピュータシステムのソフトウェア障害に例え
ていくと、ある原因で入力データに予期しないデータが
投入され、それによって格納する実数の配列領域が不足し、別
の変数領域のデータを破壊するために、結果としてデータ
ベースが破壊された。といった一連の状態の因果連鎖
4-2 人体解剖構造のオントロジー

医療オントロジーを開発するにあたって，人体解剖構造物の記述，は疾患ともに基盤的な位置づけとなる。ここでは，まず本文解剖構造オントロジーを開発するにあたって，単純に部分-全体関係であるpart-of関係だけでは医療で使われるように解剖構造関係を記載した概念が十分に扱えない。

例えば，胃は囊状の構造物と見れば，胃全体に対して胃の内腔，胃壁全体からなる。胃壁はさらに内壁，筋肉層，外膜からなっており，これら相互の関係は通常のpart-of関係で記述できる。一方，囊状の胃は，その入口に近い部分を胃嚢門部，袋中央部の一部が大きな部分を胃体部，胃の出口に近い部分は胃幽門部と呼ばれ，これらの各部分は，胃内壁を構成する細胞の種類の分布が大きまり変化することに関連しているため，異なる部分名称が与えられている。内腔，胃壁をpart-ofとしたまま，これらの部分名称構造をも囊状の胃のpart-ofとしてしまうと，相互に推進する複数の重複した部分から胃が構成されていることになる。また，機能や構造は異なるわけではないが，発達する胃の内側カバーと外側カバーにはそれぞれ小胃（しょうがん），大胃（たいがん）という名称が付けられており，「小胃にできた胃がん」などと表現するのが慣例になっているが，こうした部分的な名称をもpart-of関係で記述することは部分-全体関係とはニュアンスが異なるため適切でないであろう。そのほかにも，例えば先に述べたように胃壁は胃の内腔，筋肉層，外壁からなるが，それぞれの構造は胃特有であり，心臓や腸とは異なる。しかし，胃のどのpart-of関係にある部分においても基本的には同じ胃壁構造を保っていることを記述する手段がある。こうした問題の解決が本オントロジーではpart-of関係を細分化することにより図られている。

次に重要な記述上の課題として，二つの解剖構造物の接続に関する記述をどのようにするかがある。血管Aと血管Bが接続している状態，血管Aが血管Bを分岐している状態，骨Aが骨Bと関節を介して接続している状態，など，人体ではさまざまな構造物同士が直接または間接的に接続し，接続において血管のように内部に流体が流れ得るような接続関係，神経のように電気信号が伝達するような接続関係，関節のように力学的変化が伝わるような接続関係など，役割に違いがある。途中経路の破壊により異常状態が惹起されることを推論するためには，こうした接続関係をどうするかが，オントロジー開発の目的の一つとして必要である。接続箇所自体の不具合を扱えるようにすることは，接続部分の陥没を重視した深い疾患を引き起こすようなケースや，接続部だけ人工物に置き換える手術の記述が自然に行えるメリットがある。本オントロジーではこうした問題を解決できるような接続記述方式が導入されている。

4-3 SNOMED-CTとの違い

本号で藤田らにより解説されているSNOMED-CTは，米国で開発されてきた実用レベルにある医学オントロジーの代表的なものである。SNOMED-CTは，当初，病理診断に使用する医学用語の記述法とコードを意味的に体系化するために開発されてきたが，現在では39万の医学概念がある115万用語により記述され相関において意味的な関係づけがなされてその種類は65種類に及ぶ，一種のオントロジーとして利用できるデータベースに成長している。SNOMED-CTはこうした開発の歴史から，個々の医学概念の意味を一定の形で定義することから始まったわけではなく，これまでに収載されてきた膨大な数の医学用語の間に意味的な関係づけをすることにによって結果的にオントロジーの性格をもつようになったものと著者らは想定している。そのために，疾患とは何か，検査所見とは何か，といった視点で意味を定義するための記述形式を決定し，それに従って疾患名検索所見をほかの医学概念により記述していくといった著者らが構築しうるオントロジーとは異なり，SNOMED-CTは知識の記述形式に一定の原則がないため計算機による推論や新しい意味関係の生成といった高度な処理には向かない面がある。しかし，一方でその収載概念の多さや，国際的な管理体制，英語圏で利用できる唯一といってよいソースであること，英語での臨床情報をコーディングするという利点で大きな力を発揮すると予想される。したがってSNOMED-CTでコーディングされた英語臨床情報をより高度に意味析解する目的で，著者らが
構築のオントレジオを活用できるようにすることを目指す必要があり、そのためには、両者間でのコードマッピングが重要な作業となるだろう。

5. 医療と関連するオントロジー

前章で解説した医療オントロジーは、診療での応用を前提とした開発が進められているが、人体の解剖構造オントロジーはヒトを対象とするライフサイエンス全般で共通に使用できる部分が多い。また、多くの疾患が遺伝子配列の部分的な変異により発生することや、複数の遺伝子配列の変異の組み合わせが生活習慣上の要因（例えば喫煙）と組み合わさって疾患を引き起こすことでもわかってきた。こうした遺伝子配列の変異がもたらす身体の異常や行動の異常を「表現型（フェノタイプ：Phenotype）」と呼ばれるが、本特集で理化学研究所の河野が解説しているように、遺伝子変異データと表現型データとの関係データベースの構築が各国で行われており、このようなデータベース構築にあたって使用される文書やその関係をオントロジーで記述し、文書の相互運用性を確保しようという生物オントロジー統合化が進められている。特に、マウス表現型については、理化学研究所は国際マウス表現型情報統合シンポジウムを開催し、国際コンポーサム「インターフェノーム（Inter-Phenome）」を形成し、オントロジーを共通利用できるよう関連づけによる統合化を行っている[Masaya 09]。この統合化には大阪大学歯科研究室が開発したトップオントロジーであるYAMATO（Yet Another More Advanced Top-level Ontology）がベースに使われている。

マウスなど実験動物の表現型は、ヒトでいえば症候で見られる症状や異常状態に相当し、将来的には図7に書かれた個々の異常状態ノードがそれに対応する。遺伝子変異が潜在的の原因となっているヒトの医療も少なくなく、図7の因果連鎖の上流に遺伝子変異を記述していくべきであることに、実験動物の遺伝子変異と表現型データベースで使われる言語とオントロジーはヒトの診療を対象とした医療オントロジーとも関係を記述し統合していくことが重要であろう。こうした統合化が進めば、実験動物における遺伝子変異が引き起こす異常（表現型）を、ヒトの疾患であれもどれに関連するかを探索することもオントロジー上で可能となり、ヒトの疾患の遺伝子的な原因を推定することにも役立つ可能性がある。

一方、ここで述べた実験動物の表現型データベースは、ヒトでいえば個々の患者の状態を記述した電子カルテデータをもとにした症候データベースに相当する。したがって、患者症候データ（表現型データ）をヒトの遺伝子検査結果で得られた遺伝子変異やタンパク質構造異常などのデータと関連づけたデータベースを構築していくことにより、遺伝子変異に起因する可能性のある疾患を探索することができ、これと上述した実験動物データベースともリンクすることで、疾患のメカニズムの明確に大きな役割を果たすことができる。こうした観点から、国内多施設の症例データベースとその患者の遺伝子変異データを関連づけた統合データベース構築を目指した基盤開発を行うため、東京医科歯科大学により「統合医科学データベースプロジェクト」が文部科学省統合データベースプロジェクトの一環で進められている。このプロジェクトでは、ヒトを対象としたがん、神経疾患を中心とする医科学分野において、データ交換方式、疾患情報モデル、異なる疾患分野間で概念の関連づけを可能とする情報構造化技術、データベースのクオリティコントロール技術・セマンティック検索、多言語環境における日本語ベース検索といった技術を開発し、散在する医科学データベースを多剎面の統合医科学データベースとして実証的に統合し広く利用できることを目指しており、がんと神経疾患の症状所見を記述する文書とオントロジーの開発が進められている[Nakaya 08]。

6. 医療オントロジーの活用と課題

医療オントロジーの活用例としては、蓄積された診療データベースの解析に活用することにより、テキストマイニングによる知識発見、文章データを含む多施設間臨床医学データの疫学的解析（疾患と症状、検査異常の頻度を解析し原因やリスク因子の重要度を解析すること）、類似の臨床経過をとった患者の検索などに貢献すると考えられる。前述したようにデータ入力時の患者状況に依存した専門用語提示など高度なマンbourneインタフェースの実現を目指すことにより、蓄積されるデータの質を上げ欠損値を減少させるとともに精度や表現の標準化を図ることができる。さらに、意味的相互運用性を維持した施設間の大規模データ交換も可能である新システムは、医療データベースの統合化に基づいたデータを多機能の診療情報データベースの統合に大きな役割を果たすことが予想される。

患者個人への医療安全対策の向上にも情報システムが一層役割を果たすことが考えられる。例えば、ジオタリスという心臓の働きを強める薬剤の使用説明書には、「高血圧症が引き起こした心機能不全状態の患者には使うとよい」と書かれているが、前述したような因果連鎖で疾患が捉えられているオントロジーを活用することにより、患者状態がこうした因果連鎖状態にあることを計算機が認識でき、適切な薬剤を推奨することができる可能性がある。オントロジーの知識そのものを提示する知識ナビゲータを開発し、医学生の知識習得支援に活用したり、一般向け医科学解説書の電子版として提供したりする応用も考えられる。

一方で、実用的な課題を解消していくためには、医療オントロジーが、疾患や人体解剖構造だけでなく、薬剤や手術操作などに拡大される必要があるとともに、日
常臨床の場で使用されている医療用語の同義語バリエーションとオントロジーでの語彙との対応も必要となる。
また、巨大なオントロジーをリアルタイムで探索して診療の場で使えるアプリケーションとして提供するためには、データベース構造の検討や効率の良いアプリケーションインタフェースの設計・開発も必要になると考えられる。巨大化したオントロジーを進歩し続ける医療知識に合わせてメンテナンスしていく体制の整備や医学文献からの知識の半自動収集も今後の非常に大きな課題である。

謝辞
本解説における既存概念の定義およびSNOMED-CTとの違いに関する部分は参考文献[大江09]の一部をもとにさせて研究修正し、図の一部を許可を得て転用した。また、「医療情報システムのための医療情報知識基盤研究開発事業」は、著者らと、大阪大学産業科学研究所 グリーン・インク教授、同 古崎晃司准教授、国府裕子、周 優の各特任助教と共同で実施されたものである。

カテゴリー文献


[国府08] 国府裕子、周 俊、古崎晃司、今井 健、大江和彦、溝口理一郎：臨床医療オントロジーの構築に関する基礎的な考察，第22回人工知能学会全国大会（2008），http://www.ai-gakkai.or.jp/jmai/conf/2008/program/pdf/100099.pdf，（参照2010-02-02）


大江 和彦（正会員）

今井 健（正会員）