コンピュータ囲碁研究の歩み
Development of Computer Go Researches

伊藤 拓志 電気通信大学
Takeshi Ito
The University of Electro-Communications.
itoc@cs.eec.ac.jp, http://entcoq.co.ooco.jp/ito/

Keywords: computer Go, game informatics, Monte-Carlo tree search, knowledge-based system.

1. ゲーム情報学から見た囲碁

コンピュータにゲームをさせたいという人工知能的な興味は、「チェス」というゲームを中心に行われてきたという歴史がある。欧米では、知の象徴として「チェス」というゲームが存在し、電子計算機が生まれる100年以上も前の1840年代には、計算のできる自動機械の研究者であるチャールズ・バベッジ氏がチェスの思考ルーティンの研究を行ったとされている。その後、1940年代にプログラム可能な計算機が生み出されて以降、1997年にIBMのチェス専用マシンDeep Blueが、当時の世界チャンピオンのKasparov氏に勝利を収めると、囲碁の研究は人工知能研究の重要な一つのテーマとなり、さまざまな研究成果を生み出す原動力となってきた。

国内で、メジャーな思考ゲームといえば、「囲碁」に並んで「将棋」があるが、コンピュータ将棋は、チェスライクゲームの一種として、チェスと同じゲーム木探索の手法で発展を遂げてきた。世界中には、チェスと同じそう間のリーグが各種あるが、日本固有の将棋は、取った駒を持ち駒として再利用できるルールのため、評価関数の設計が難しいばかりか、終盤になるほどに分岐が増え、コンピュータにとって困難なゲームであった。

しかし、評価関数に関しては、Bonanzaのもたらした機械学習の技術の公認により、多くのプログラムがプロ棋士に迫るように局面評価を実現するようになり、さまざまな探索技術やBit Boardを用いた軽い局面表現の実装やハードウェアの進歩も相まって、膨大な探索が高速で行える技術も進み、多くの問題を克服してきた。その結果、2010年には、情報処理学会の特製プログラム「あから太郎」が女流トップの清水め代女流王碁に勝利し、2012年には、伊藤英紀氏が開発した「ボンクラーズ」という将棋プログラムが、元名人の米長邦雄永世棋聖に勝利を収めるなど、トッププロ棋士に勝利する日も近いと思われる。

囲碁やチェス、将棋のようなゲームは、ゲーム情報学的には、二人完全情報確定ゼロ和ゲームと分類される。これは、二人でプレイするゲームで、互いに双方のルール選べる手（合法手）がすべて明らかなのであり、サイコロやロシトマシンのような不確定な要素のない、どちらかが勝つとどちらかが負けるという全体の勝敗の利害関係を総計するとゼロになるゲームであることを利用している。

二人完全情報を持つゼロ和ゲームの強い思考プログラムをつくる設計方針としては、基本的に評価関数をつくり、ミミックス法によるゲーム木探索をいかに高速に行うかという形で実現されてきた。

このような考えに立つと、計算すべきゲーム木の探索空間(S)は、そのゲームの平均合法手(B)と平均終了手数(N)から、S=B^Nという計算式で概算することができる。

これを計算すると、世界的に有名なゲームは、以下の表1のように計算される。

表1 ゲームの探索空間

チェッカー	100300乘
チェス	100300乘
チェス	10060乘
チェス	10010乘
チェス	100220乘
囲碁	100360乘

この表を見ると、囲碁がほかのゲームに比べて極端に探索空間の広いゲームであることがわかる。実際、初手の合法手は、パスも含めると19×19=361+1=362手もあり、1手打つことに少なくなるものの、探索分岐数がほかのゲームに比べて圧倒的に大きい。ゲーム情報学的に見ても、非常に困難な課題であるといわれていた。

そればかりでなく、局面の優劣を数値化する評価関数の設計も極端に難しいといわれている。チェスライクゲームは、駒の損得や局面の危険度などを数値化することで、ある程度表現することができるが、囲碁の場合、石の死活はもっとも、石の厚みや模様などといった抽象的概念を数値化することはほとんど不可能で、静的評価関数の設計は困難を極める。そのため、囲碁はこれまでゲーム木探索で培った技術が使えず、コンピュータ囲碁の開発を妨げてきた。

2. コンピュータ囲碁の歴史

2.1 モンテカルロアプローチ以前

コンピュータ囲碁に関する最初の論文は、Remus により、1962 年に発表されたものとされている[Remus 62]。コンピュータ囲碁プログラムは、チェスやチェッカーの研究に比べて遅く始まり、なかなか強くならなかった。チェスやチェッカーで成功したゲーム木探索のような手法では、膨大な合法手のために深い探索を全く行うことができず、その開発を妨げていた。その後、コンピュータ囲碁は、膨大なゲーム木探索の手法を避けるような形で進化を遂げる。

1960 年代後半になって、ようやく世界初のプログラマムがZobristによってつくられる。このプログラムは、パターン認識に基づくプログラムであった[Zobrist 69]。

1970 年代に入ると、囲碁プログラムの作成を試みる開発者が徐々に現れるようになる。Ryderは、図1のように手の先に見せる影響度をポテンシャル関数という概念で表現しようと試みた[Ryder 71]。

![図1 影響力関数の例](image)

その後、局所的な石の生死を判定するアルゴリズムや石のつながりを連する群などのまとまりとして捉える考え方方流れ、石の攻撃を防御に関する戦略的思考を実現したプログラムが出現する[Reitman 79]。しかし、このプログラムも、15程度級で成り立っているといわれている。

1980 年代に入ると、コンピュータ囲碁の大会が開催されるようになり、開発も盛んになってくる。1984 年に、世界初のコンピュータ囲碁大会がUSENIX 会議の一イベントとして開催された。また、1985 年からは、台湾の応昌期がING杯世界コンピュータ囲碁大会を開催した。この大会では、2000 年までに互先で人間のトッププロに勝てば4,000万万円（約1億4,000万円）という大きな賞金を出したことで話題を呼んだ。

この時期、コンピュータ囲碁は、人間のプレイのモチーフ石の強さやつながりに関する知識を何とかコンピュータ上に記述しようとする知識ベースのプログラムが主流であった。

1990年代半ばには、斎藤によって、著をプレイする人間の思考過程を認知科学的に研究した論文などが相次いで発表され、人間を手本とするコンピュータ囲碁開発へ影響を与えた[Saito 95, Saito 97]。

局面が与えられると、石のまとまりを連、群、グループなどの階層的なデータ構造で保持し、算出の影響力関数、パターンマッチングを行い、局所的な石の生死などを探索し、局面の認識を試みる。そして、定石、布石、手筋などをデータベースから呼び出しお候補手を導き、最終的に石の強さや関係を経験に基づくアルゴリズムから判断し、将来起こってくる可能性のあるアシ付けや有利な手を示すことから、パ aime化的新しい技術を使って学習しようとする試みなどが現れたが、なかなか強いプログラムは出現しなかった。結局、2000年代のING杯終了時までに、対人戦での勝利は、1997年に11歳〜13歳のアマチュア二段〜六段のプレイヤに対して11子猶に勝利し、25万台湾ドルを獲得したのが最高だった。

2003年から2006年には、コンピュータ囲碁フォーラムが主催となり、岐阜シャレンジ「世界コンピュータ囲碁大会」が開催され、2001年以降、四つ目のプログラム「Goemate（手談対局）」「KCC IgO（銀星囲碁）」「GO++（最強の囲碁）」「HARUKA（最高峰）」に初級が認定されるなど、一定の強さを示すプログラムが現れるようになった。しかしこの値はあまりにも低く、実際には頑が多、石が混ざり合うと急に弱くなるなど、知識ベースのプログラムの限界が見られるレベルであった。

また、2000年代には、19路盤の開発の難しさを相まって、小路盤の研究が進んだ。小路盤とは、19×19の囲碁でなく、9路盤のような小さな囲碁のことである。チェスライクゲームのように、初期配置のないボードゲームであるので、原理的には19×19の大きさ以外の盤でもプレイできる。

2000年代には、清らによって、コンピュータによる探索を用いて2×2、3×3、4×4盤を解析した研究が発表された。それまでは、プログラムが人間の手作業で小路盤を解析したという報告もあったが、コンピュータを用いて四探索をしたものはなかった。清らは、2×2（2路盤）は持篤、3×3（3路盤）は初手黒が（2,2）で打つと黒の勝ちであることを示した。また、4×4（4路盤）は、初手黒が（2,2）で打ったときのみ、持篤となり、それ以外の場所に打った場合はいずれも後手白の勝ちとなることを示した[清 00]。

Werfらも、2003年に、この研究を継いだと、より大きな盤について調べ、5×5（5路盤）では、初手黒が天元に打つと25目勝ち（全部取る）ことを示した[Werf 03]。

6×6（6路盤）、7×7（7路盤）に関しては、人間による分析で、6路盤は黒の4目勝ち、7路盤は、黒の9目勝ちという解がそれぞれ主張されているが[Davies 95]。またコンピュータによる解は見つけていない。小路盤から、徐々に大きな盤の解を求めていくという研究もコンピュータを用いた解析という意味ではテレレン
ジングなテーマの一つであるといえる。

2・2 モンテカルロ木探索の登場以降

2000年代半ば頃まで、さまざまな技術が試みられたものの、知識ベースの手法を上回るプログラムはなかなか現れなかったが、2005年頃になると、突如、モンテカルロ木探索に用いたプログラムが台頭を始める。

モンテカルロ法とは、膨大な乱数シミュレーションを行って、近似解を求める数値計算の手法の一つである。図2で、この手法を単純化させた考えを示すと、図2のよう、ある局面から次の一手以降の手を乱数で選択し、最終までシミュレーションして、勝敗を調べ、最も勝率の高い手を選択するという方法になる。

このようなモンテカルロ法をコンピュータ囲碁に応用したプログラムは、1993年、すでに考察されていたが、ほかの多くの手法と同様、あまり良い成績が出ていたので、多くの開発者はほかの手法と同様にモンテカルロは囲碁には向かないと考えていた[Brügmann 93]。ところが、2006年に、コンピュータの思考ゲームの大会であるComputer Olympiadの9路盤部門で、フランスのRémi氏が開発した『Crazy Stone』が優勝し、一躍注目を集めることとなる[Coulom 07]。ただ、この時点では成功は9路盤に留まっていたので、広い19路盤での応用は難しいのではないかという懐疑的な意見が強かった。

しかし、翌2007年のComputer Olympiadでは、9路盤だけでなく19路盤でも『MoGo』、『Crazy Stone』などのモンテカルロプログラムが参戦を占めた。また、この年から開催されたUEC杯コンピュータ囲碁大会において、『Crazy Stone』が優勝するのに至って、モンテカルロ木探索の手法が完全にそれまでの知識ベースのプログラムを一掃することとなる。

そこで現れたモンテカルロ木探索の成功は、ただ単に乱数シミュレーションを膨大に行わせただけでなく、（1）UCB（Upper Confidence Bound）と呼ばれる最適化手法を用いることにより、膨大なシミュレーションをより効率的に勝率の高い手に割り振る手法を併用したこと、（2）パターン知識を利用することで、知的なシミュレーションを実現したこと、の二つの工夫によるものであった。

モンテカルロ木探索の詳細については、藤松氏の解説に譲るが、この手法の出現により、主に以下の二つの大きな利点が得られることとなった。

（1）複雑な局面評価が不要になった…モンテカルロ法では、局面中盤の静的な評価関数のようなものは不要で、石の死活や変側石の敵きなどの評価を行う必要はなく、終局での勝敗だけ判定できようなくなった。

（2）計算機パワーが使えるようになった…知識ベースのプログラムでは、記述したことを判断するのに対して、コンピュータの計算能力を最大限に使っていると認められるモンテカルロシミュレーションにより、膨大な計算を行うことが強さを繋げるようになった。

知識ベースのプログラムは、プログラムが一生懸命囲碁の知識をコンピュータに授与する必要があったが、モンテカルロア プローチでは、囲碁のルールと終局判定（勝敗判定）を教えてやるだけで、あとは計算機のパワーを活用した膨大な数のシミュレーションにより、一定の強さのプログラムがつくられる。これが単独のもので、それまで知識ベースのプログラムで苦労してきたプログラムが、この手法のプログラムを書いたところ、簡単に知識ベースのプログラムを凌駕したことに驚いたいわゆる、安易に強さを手に入れられるという新しい技術を例えて、「暗黒面に堕ちる」と評したが、まさに言い得る妙である。

しかし、近年になって、ただ単に乱数でのシミュレーションの数を増やしても、一つ一つのシミュレーションの質を高めることの重要性が見直されるようになり、どのような知識を与えるかが開発者の工夫の領域となってきている。計算機パワーと人間の知識に基づく工夫が強さを生かす指針となっている。

3. コンピュータ囲碁の現在と未来

UEC杯コンピュータ囲碁大会は、モンテカルロア プローチが大盛りになりつつある2007年より開催してきた[UEC]。表2は、この5年間の上位プログラムの推移である。それはこの大会の主催者として、この大会を毎年見えてきたモンテカルロ出所以前の長きにわたる低迷期を取りintégrated datasources.
そうかという勢いで、年々強くなっている印象である。
それを裏付ける客観的な数値として、インターネット上のレーティング（棋力を点数で評価する指標）がある。インターネット上の対局場「KGS Go Server」では、コンピュータどうしのトーナメントが毎月開催され、レーティングでその強さを測っている「KGS」。2007年末当時、最強のコンピュータ囲碁のレーティングがおよそ二級だったが、2012年7月末現在では、「Zen」、「Crazy Stone」等の強級クラスのコンピュータ囲碁は、五段まで棋力を伸ばしている。5年弱で6段も強くなっている計算だ。「KGS」におけるレーティングは、日本のアマチュアの段級位よりもやや厳しいといわれているので、すでにアマ五段よりも上の実力はあると考えてよいだろう。

順調に棋力を伸ばしているモンテカルロアプローチであるが、そこにはいくつかの欠点も指摘されている。

一つは、多くの合法中の手から確率的に良い手を選ぶので、正解が1本しかないような手を選びにくいという問題である。初期のモンテカルロプログラムでは、シチュエーション理解できず詰みのないシチュエーション逃げて負けてしまった初歩的な弱点を抱えてしまうプログラムであった。今では、シチュエーション回避のルーティンを入れながら、多くのプログラムではこの問題を回避している。このような一本道の正解手順を見つけにくいという問題は残っている。

また、モンテカルロを効率的に用いる方法の一つとして、AMAP（All Moves As First）と呼ばれる手法がある。これは、ある局面でaという手を選びだから、Sに降でaを打った局面すべてを考慮するという方法である。これによって、大幅に実質のシミュレーション回数を節約することができるため、多くの強いプログラムではこの手法が用いられている。これには功罪もある。副作用として、手順が重要となるような局面で正確な判断ができなくなるのだ。例えば、複数のコウがあるような終盤で、いくつかあるコウのうちどおりに入り合わせて最適なコウを目指すような問題をうまく解けることができない。

これらの欠点を克服するために、開発者はさまざまな工夫を凝らしているが、このような問題を一つ一つ手作業で修正していくのは難しく、何らかの新しいブレクスルーが必要なのかもしれない。

2012年3月には、武宮正樹九段に対して、2011年度UEC杯優勝プログラムの「Zen」が囲碁で先で、5子、4子で連勝するなど「武宮イベント」。コンピュータ囲碁の近年の棋力の進歩は著しいが、これからプロ棋士との真剣勝負が行われるようになると、上述のような問題が浮き彫りになってくるだろう。

一方、モンテカルロアプローチのコンピュータプログラムは、人間の感覚では想像できない斬新な手を見せることもあり、武宮九段との対戦でも、その違和感に人間側が感覚を覚わされるという点も否めなかった。

ある意味、囲碁という道具もなく難しい問題に挑む方法として、これまで人間が考えてきたアプローチとは全く違う新しいアプローチとして、コンピュータが新しい未来を見出せているともいえる。今後のプロ棋士と人間との対戦から、新しい景色が見えてくるとしたら、非常にエキサイティングな未来が待っているだろう。

\[\text{参考文献}\]

【KGS The KGS Go Server】 http://www.kogs.com/

【Ryder 71】 Ryder, J. L.: Heuristic analysis of large trees as generated in the game of Go, Memo AIM-155, Stanford Artificial Intelligence Project, Computer Science Department, Stanford University, Stanford, California (1971)

【清 00】 清 優一，川崎俊明: 探索プログラムによる四路盤囲碁の解，情報ゲーム情報学研究，4-11, pp. 89-76 (2000)

【武宮イベント】 コンピュータ囲碁プログラマーに挑戦。http://entoco.c.ooco.jp/entoco/event/20120317/humvscom.html

【UEC UECコンピュータ囲碁大会HP】 http://jasb.cs.uec.ac.jp/~igo/

2012年8月7日 受理

著者紹介

伊藤 慎志（正会員）
1988年北海道大学文学部言語学科卒業。1994年名古屋大学大学院文学研究科情報工学専攻修士課程（工学修士）。同年より電気通信大学助手。2007年より同助教。ゲーム理論として知る科学的観点に従事。コンピュータ将棋協会（CSIA）理事。コンピュータ囲碁フォーラム（CGF）理事。UEC杯コンピュータ囲碁大会実行委員長。