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Abstract: In recent years, there has been an increasing interest in numerical semantic labeling,

in which the meaning of an unknown numerical attribute is assigned by the label of the most

relevant attributes in predefined knowledge bases. Previous methods used the p-value in statistical

hypothesis testing to estimate the relevance and thus strongly depend on the distribution and type

of data domain. In other words, the p-value based similarity is unstable for general cases, where

such knowledge is undefined. In this paper, we first point out the p-value based similarity limita-

tions. Second, we proposed the Distribution-Based Similarities where the similarities are derived

from the norms of the inverse transform sampling of attribute distributions. Our experiments on

City Data and Open Data show that the Distribution-Based Similarities outperforms other the

p-value based approaches in the task of semantic labeling for numerical values.

1 Introduction

In recent years, there has been an increasing interest

in numerical semantic labeling for tabular data where

numerical values from table columns are matched to

the semantic labels in knowledge bases. It enable data

integrated and hence could be potentially useful for

other applications such as table search [5, 8], table

extension [4], completion [1], or knowledge base con-

struction as used in DBpedia [15], YAGO [11], and

Freebase [2].

A common work-flow is the retrieval setting in which

the label of a query column is assigned by that of the

most relevant columns in labeled data with respect

to a specific similarity or distance metric. However,

how to select a good similarity or distance metric for

numerical attributes is a difficult challenge because of

several reasons.

1. I1: First, the numerical values of attributes

rarely have the same set of values as the rele-

vant values in knowledge bases.

2. I2: Second, the size of attributes could vary

from a few to millions of numbers. It is hard to

use directly apply the normed vector spaces as

similarity metrics.

3. I3: Third, in general cases, we do not have the

predefined knowledge about distribution and type

of data.

Previous approaches used the p-value of a statistical

hypothesis test as a metric to measure the similarity

between numerical attributes [7, 9, 10]. The p-value

based similarity address the first (I1) and second is-

sue (I2), however it cannot be used in the third issue

(I3). In fact, a statistical hypothesis test strongly de-

pends on assumptions regarding the distribution and

type of data. For instance, these data attributes have

to be drawn from a specific form of distribution (e.g.,

normal distribution or uniform distribution) or data

types (e.g., continuous or discrete). However, deter-

mining the form of distributions and data types of

unknown numerical attributes is a difficult challenge.

As a result, a proper hypothesis test cannot be easily

selected when we do not have such predefined those

information.

Moreover, the interpretation of the p-value of statis-

tical hypothesis testing is not clear evidence for mea-

suring the similarity between numerical attributes.

We discuss some controversial aspects regarding the

use of the p-value in literature as the following section.
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2 P-value as a similarity

2.1 What is the p-value:

According to The American Statistical Association

p-value definition [13], “Informally, a p-value is the

probability under a specified statistical model that a

statistical summary of the data (e.g., the sample mean

difference between two compared groups) would be

equal to or more extreme than its observed value.”

The definition of p-value may help to summarize

the conditional probability of data incompatible with

a specified statistical model if the null hypothesis (H0)

is true. The p-value cannot tell us whether the null

hypothesis is true or not. The smaller the p-value, the

greater the statistical incompatibility of the data with

the null hypothesis. In other words, this incompati-

bility can be interpreted as providing evidence against

the null hypothesis.

In the context of semantic labeling for numerical

values, the null hypothesis H0 is defined as two nu-

merical attributes were drawn from the same semantic

labels. The alternative hypothesis is that two numer-

ical attributes were drawn from different semantic la-

bels.

2.2 The use of p-value of other base-

line approaches:

Regarding the problem of semantic labeling for nu-

merical values, Stonebraker et al. proposed a method

for schema matching using decisions from four ex-

perts [12]. One decision used the t-test statistic of the

Welch’s t-test [3] to measure the probability that two

numerical attributes were drawn from the same distri-

bution (semantic labels). Inspired by [12], Ramnadam

et al use the p-value to determine the relevance of nu-

merical attributes [10]. The author defined the null

hypothesis H0 is that the two numerical attributes

are drawn from the same distribution (semantic la-

bels). The p-value was used as the confidence score

for two attributes are drawn from the same semantic

labels. Their experiments on the Welch ’s t-test [3],

the Mann-Whitney U test [6], and the Kolmogorov

Skmiro test (KS test) [3] show that KS test archived

the highest performance. The later approaches were

also built on top of KS-Test [7,9]. Overall, the general

idea is that the p-value was used to measure the level

of relevance of numerical attributes.

2.3 First issue: The p-value is the prob-

ability of the hypothesis is true

As mentioned, other baselines approaches used the p-

value to measure the probability of two attributes are

similar or different. However, the p-value tells us the

conditional probability of observed sample data when

the null hypothesis is valid (H0 is true). The equation

of p-value is shown as follows.

p value = P (D|H0) (1)

where D is the observed sample data. However, con-

sidering the original purposes of the baseline approaches,

the similarity metric could be interpreted as the con-

ditional probability P (H0|D) of the probability of H0

given a data D. In a Bayesian-like approach, it can

be calculated by the following formula.

P (H0|D) =
P (D|H0)× P (H0)

P (D)
(2)

The value of P (H0|D) and P (D|H0) (p-value) mea-

sure different concepts. Therefore, the p-value tells us

the probability of the obtained sample data D when

H0 is valid, rather than telling us the probability of

the null hypothesis P (H0) or the conditional probabil-

ity P (H0|D) of the null hypothesis given the obtained

sample data D. Moreover, we do not know whether

this condition P (H0) is valid or not in practice, there-

fore P (H0|D) can not be derived from the Equation

2.

2.4 Second issue: Comparing p-value

to each others

Since the general work-flow is retrieval setting, we

need to perform a similar search between the query at-

tributes with all samples in a database. In the p-value

based approaches, the p-values of statistical hypothe-

sis testing between the query sample data with other

samples in a database are ranked to find the most

similar attributes. In other words, p-values are used

to measure the level of similarity.

However, in the statistical hypothesis testing, com-

paring the p-value between different testing does not

necessarily imply the level of similarity. Moreover, p-

values are affected by the size of the sample data. If

we keep the effect size as a constant, then the larger of
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sample size will lead to the smaller of the p-value and

vice versa. The dependence of p-value with the size of

data sample is shown in Equation 2.4 (t-test), Equa-

tion 6 (U test), and Equation 8 (KS test). In general

cases, the size of numerical attributes could vary from

a few to millions of numerical values. Therefore, it is

controverted to use only the p-values as a measure-

ment of a significant level of similarity.

Welch ’s t-test

t =
X̄1 − X̄2√

s21
n1

+
s21
n1

(3)

df = min(n1, n2)− 1 (4)

p valuet test(t, df) =
1

2
+ (t

Γ[ 12 (df + 1)]
√
πdfΓ(df2 )

)

2F1(
1

2
,
1

2
(df + 1);

3

2
;
−t2

df
)

Mann-Whitney ’s U test

u = n1n2 +
n2 ∗ (n2 + 1)

2
−

n2∑
i=n1+1

Ri (5)

p valueUtest(t, n1, n2) =
|u− n1(n1+n2+1)

2 | − 0.5√
n1n2(n1+n2+1)

12

(6)

Kolmogorov-Smirnov test

D(n1, n2) = sup
x

|F1,n1
(x)− F2,n2

(x)| (7)

p valueKStest(D,n1, n2) = e−2D2×n1×n2
n1+n2 (8)

3 Distribution-Based Similarities

In this section, we introduce the new categories of

similarity metrics, called Distribution-Based Similar-

ities (DBS). The similarities are derived from a norm

of the inverse transform sampling of numerical at-

tributes. DBS address all the three mentioned issues:

I1, I2, I3.

1. I1: The similarity is derived from distributions

of numerical attributes, therefore it is not neces-

sary the assumption that the values of numerical

attributes have the same set of values.

2. I2: In DBS, we introduce an attribute transfor-

mation (Section 3.1) to transform the list of nu-

merical values to a distribution representation

as well as standardize the input size of numeri-

cal attributes. Therefore, after transformation,

the numerical attribute has a representation as

a vector with h size.

3. I3: DBS is derived from the empirical distri-

bution of numerical attributes without the need

to make any assumption regarding data type or

data distribution.

The overall framework of semantic labeling with

DBS shows in Figure 1. The framework consists of

two phases. The first phase involves data prepara-

tion and knowledge base construction while the sec-

ond phase is actually semantic labeling.

In the first phase, given labeled numerical attributes,

the attribute transformation converts these labeled

attributes from numerical values into distribution pre-

sentations. Then, these distribution presentations are

stored in the knowledge base for future similarity com-

parison.

In the second phase, the numerical values of an

unknown attribute are standardized with attribute

transformation. Then the similarity search module

is used to calculate the similarities between these dis-

tribution representations. In this paper, we consider

three typical distance of the Minkowski distance: the

Manhattan distance (called DBS1), the Euclidean dis-

tance (called DBS2), and the Chebyshev distance (called

DBSinf). After the similarity searching process, we

have a ranking list of semantic labels ordered by their

corresponding similarity scores.

3.1 Attribute Transformation

In this section, we describe the transformation of

numerical attributes to standardize the input size for

the representation learning. Attribute transformation

is an important module because the representation

learning requires a standardized input size, and the

size of numerical attributes could vary from a few to

thousands of values. To standardize the input size,

we use inverse transform sampling [14] (Section 3.1.1)

to standardize the input size and transform numerical

values into forms of distribution presentations.

Given an attribute a having numerical values Va =

[v1, v2, v3, ..., vn], the objective of attribute transfor-

mation is the trans(Va) function, which is defined as
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図 1: General architecture of semantic labeling for

numerical attributes with DBS

follows.

x = trans(Va) = xicdf (9)

The transformation function trans(.) converts Va into

x, where x ∈ Rh. The list of values xicdf ∈ Rh

is obtained by the transformation using the inverse

transform sampling (Section 3.1.1) on numerical val-

ues. The inverse transform sampling is described as

follows.

3.1.1 Inverse Transform Sampling

Let a be an attribute with numerical values Va =

[v1, v2, v3, ..., vn]. We treat Va as a discrete distribu-

tion so that the CDF of v ∈ Va is cdfVa(v) and ex-

pressed as follows.

cdfVa
(v) = P (Va ⩽ v), v ∈ Va, cdfVa

: R → [0, 1] (10)

where P (.) represents the probability of values in Va

less than or equal to v. The inverse function of cdfVa
(.)

takes the probability p as input and returns v ∈ Va as

follows.

icdfVa
(p) = cdf−1

Va
(p) = min{v : cdfVa

(v) ⩾ p},
p ∈ [0, 1]

We select h numbers from Va where each num-

ber is the output of the inverse distribution function

icdfVa
(p) with probability p ∈ P = { i

h |i ∈ {1, 2, 3, ..., h}}.
For example, when the input size h = 100, then we

have P = {0.01, 0.02, 0.03, ..., 1}. For each attribute

a ∈ A, we have a list of values xicdf = {v1, v2, v3, ..., vh}
that correspond to the given list of probabilities P.

4 Evaluation

In this section, we first describe the benchmark

datasets, evaluation metrics, compared baseline ap-

proaches, experimental setting, and experimental re-

sults.

4.0.1 Dataset

To evaluate EmbNum+, we used two datasets i.e.,

City Data, Open Data. City Data is the standard

data used in the previous studies [9], [10] while Open

Data is newly built datasets extracted from Open

Data portals. The datasets are available at this ad-

dress 1.

The detailed statistics of each dataset are shown in

Table 1. m denotes for the number of semantic labels

in a dataset. n denotes for the number of columns

in a dataset. In each dataset, each semantic label

has 10 columns in the same semantic labels. The

columns of City Data is randomly generated using 10

partitions splitting, while the columns of Open Data

are the real table columns from Open Data Portals.

The number of semantic labels of the new datasets is

larger than City Data, enabling rigorous comparisons

between DBS and other baseline approaches.

4.1 Evaluation Metrics

We used the mean reciprocal rank score (MRR) to

measure the effectiveness of semantic labeling. The

MRR score was used in the previous studies [10], [9]

to measure the probability correctness of a ranking

result list.

4.2 Compared Baseline Approaches

We evaluate the performance of DBS1, DBS2, DB-

Sinf with two baseline approaches SemanticTyper [10],

1https://github.com/phucty/embnum
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表 1: Statistical description about the number of numerical values per semantic label in four datasets: City

Data, Open Data

Dataset m n
# values of each labels

all min max med avg

City Data 30 300 192,820 40 22,510 1,130 6,427.33

Open Data 50 500 7,329,815 120 1,671,455 12,506 146,596.3

and DSL [9]. SemanticTyper used the KS test as the

similarity metric for numerical attributes [10]. DSL

used a new metric with a combination of KS Test, U

Test, and the numeric Jaccard similarity.

4.3 Experimental Setting

In this section, we describe the detail experimental

setting to evaluate the semantic labeling task. We

follow the evaluation setting of SemanticTyper [10]

and DSL [9]. This setting is based on cross-validation

but it was modified to observe how the number of

numerical values in the knowledge base will affect the

performance of the labeling process. The detail of the

experimental setting is described as follows.

Suppose a dataset S = {s1, s2, s3, ..., sd} has d data

sources. One data source was retained as the un-

known data, and the remaining d − 1 data sources

were used as the labeled data. We repeated this pro-

cess d times, with each of the data source used exactly

once as the unknown data.

Additionally, we set the number of sources in the la-

beled data increasing from one source to d−1 sources

to analyze the effect of an increment of the number of

labeled data on the performance of semantic labeling.

We obtained the MRR scores and labeling times on

d × (d − 1) experiments and then averaged them to

produce the d−1 estimations of the number of sources

in the labeled data.

4.4 Experimental Results

The results of semantic labeling for numerical val-

ues in the MRR score on City Data and Open Data

is shown in Figure 2.

The MRR scores obtained by three methods steadily

increase along with the number of labeled sources. It

suggests that the more labeled sources in the database,

the more accurate the assigned semantic labels are.

DSL outperformed SemanticTyper in City Data and

Open Data because it used the information from mul-

tiple testing results.

The DBS outperform all baseline approaches. The

similarity metric based on a specific hypothesis test,

which was used in SemanticTyper and DSL, is not op-

timized for semantic meanings with various data types

and distributions in general cases. In three tested

DBS, the DBS1 (Manhattan distance) archived the

highest performance in the two datasets.

5 Conclusion

In this paper, we first point out the limitation of

the p-value based similarity. These other baselines

relied on the p-value are unstable for general cases.

Then, we introduce DBS, a category of similarities

derived from the norms of the inverse transform sam-

pling of numerical attributes. The experimental re-

sults showed that DBS1 (Manhattan distance) achieved

the best performance for the task of semantic label-

ing for numerical values. In future work, we plan to

conduct more experiments on the larger dataset to

understand the robustness as well as the efficiency of

the DSB.
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